
88

Strict and Lazy Semantics for Effects
Layering Monads and Comonads

ANDREW K. HIRSCH, Cornell University, USA
ROSS TATE, Cornell University, USA

Two particularly important classes of effects are those that can be given semantics using a monad and those

that can be given semantics using a comonad. Currently, programs with both kinds of effects are usually given

semantics using a technique that relies on a distributive law. While it is known that not every pair of a monad

and a comonad has a distributive law, it was previously unknown if there were any realistic pairs of effects

that could not be given semantics in this manner. This paper answers that question by giving an example of a

pair of effects that cannot be given semantics using a distributive law. Our example furthermore is intimately

tied to the duality of strictness and laziness. We discuss how to view this duality through the lens of effects.

CCS Concepts: • Theory of computation→ Categorical semantics; Linear logic; Denotational semantics;
Proof theory; Type theory;

Additional Key Words and Phrases: monad, comonad, producer effect, consumer effect, layering, distributive

law, strictness, laziness, linear logic, classical logic

ACM Reference Format:
Andrew K. Hirsch and Ross Tate. 2018. Strict and Lazy Semantics for Effects: Layering Monads and Comonads.

Proc. ACM Program. Lang. 2, ICFP, Article 88 (September 2018), 35 pages. https://doi.org/10.1145/3236783

1 INTRODUCTION
The study of the semantics of effects has been quite fruitful. Researchers have found two particularly

important kinds of effects: those that can be given semantics using a monad [Lucassen and Gifford

1988; Marino and Millstein 2009; Moggi 1989; Nielson 1996; Nielson and Nielson 1999; Wadler and

Thiemann 2003], and those that can be given semantics using a comonad [Brookes and Geva 1992;

Brunel et al. 2014; Petricek et al. 2013, 2014; Uustalu and Vene 2008].

Giving semantics to programs with both kinds of effects is an active area of research. The most

common technique uses a technical device called a distributive law to describe the interaction of

the effects when two effectful programs are composed. However, not every comonad-monad pair

has a distributive law [Brookes and van Stone 1993; Power and Watanabe 2002], though often there

is one. But importantly, while Brookes and van Stone had found several comonad-monad pairs

without distributive laws that were interesting to the study of domain theory [Brookes and van

Stone 1993], they did not find any that corresponded to effects. Consequently, when Gaboardi,

Katsumata, Orchard, Breuvart, and Uustalu [2016] studied the semantics of languages with both

kinds of effects, they decided to focus on the common case of when a distributive law does exist.

Here we give an example of a pair of effects with a monad and a comonad that do not have a

distributive law. Furthermore, we demonstrate that not having a distributive law increases the

forms of interaction these effects can have, with the difference between strictness and laziness

being an example of this. This poses a challenge, though, because a distributive law is often used in

order to compose such effectful programs.

Authors’ addresses: Andrew K. Hirsch, Computer Science, Cornell University, Gates Hall, Ithaca, NY, 14853, USA, akhirsch@cs.cornell.edu;

Ross Tate, Computer Science, Cornell University, Gates Hall, Ithaca, NY, 14853, USA, ross@cs.cornell.edu.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART88

https://doi.org/10.1145/3236783

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

https://doi.org/10.1145/3236783
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3236783

88:2 Andrew K. Hirsch and Ross Tate

Luckily, we do not need to come up with a completely new semantic technique to give semantics

to programs with the pair of effects that make up our example. There are already two different

semantic techniques that do not require a distributive law [Brookes and van Stone 1993; Power and

Watanabe 2002]. These techniques previously went unnamed because they were believed to be

unnecessary. Now that we have proven them to be useful, we dub them the layerings, one of which
is the monad-prioritizing layering and the other of which is the comonad-prioritizing layering.

When it is possible to use a distributive law, all three semantic techniques necessarily produce

equivalent results [Power and Watanabe 2002]. However, since there is no distributive law in our

example, the semantics specified by the layerings may produce different results. We show that, in

fact, one of the layerings specifies a semantics that reflects a strict interpretation of programs, and

the other specifies a semantics that reflects a lazy interpretation of programs.

This gives a new perspective on strictness and laziness, one of the oldest subjects in our

field [Church and Rosser 1936]. Instead of thinking of features like function application as being

either strict or lazy, we think of strictness and laziness as arising from different interpretations of

program composition. Of course there are intimate relationships between these perspectives, and

hints of our perspective can be seen within many of the prior works on strictness and laziness. But

we are bringing it the forefront, making it bold and clear by showing how changing the way that

programs compose can make even a language with almost no features—no functions, branches, or

even arithmetic, and only one type (N)—change between strict and lazy semantics.

Beyond giving an important example where the currently-preferred semantic technique based

on distributive laws fails, our example has led us to develop a classification of when that technique

can and cannot apply. This classification describes the linguistic characteristics that the technique

based on distributive laws requires, and contrasts these with the requirements of the layerings.

The rest of this paper proceeds as follows:

• Section 2 introduces Comp, which is a minimal language with observationally distinct strict

and lazy operational semantics.

• Section 3 brings attention to the effects in Comp that give rise to strictness and laziness, which

we call consumer choice and producer choice. These will be the example effects for which

semantics based on distributive laws do not work.

• Section 4 describes a comonad and a monad that capture consumer choice and producer

choice, both of which come from classical linear logic. To assist in our exploration, we present

several rules of classical and linear logic. The classical-logic rules here correspond to an

effectful calculus (with consumer choice and producer choice), while the linear-logic rules

here correspond to a (pure) calculus that makes the effects of classical logic explicit.

• Section 5 explores the three known techniques for giving semantics to a program with both

kinds of effects, and gives a novel classification of the linguistic structure that each requires. We

present the rules that formalize what we mean when we say a language is effectful, meaning

rules that must be admissable in a language for that language to be considered effectful. We

also refine these into rules for producer-effectful, consumer-effectful, and doubly-effectful

(i.e. both producer-effectful and consumer-effectful) languages.

• Section 6 applies the two layerings to give categorical semantics to Comp. We show that the

choice of layering reflects the choice between strict and lazy semantics. To do so, we introduce

Proc, a calculus that captures the effects of consumer choice and producer choice in Comp

using the comonad and monad from linear logic we explored in Section 4.

• Section 7 reviews related work on effects, monads and comonads, classical and linear logic,

strictness and laziness, and focusing and polarization.

• Appendix A generalizes to multiple-input and/or multiple-output languages.

• Finally, Appendix B proves the metatheory of the Proc calculus used in Section 6.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:3

Variables x ,y, z, . . .
Constants c ::= 0 | 1 | . . .
Expressions e ::= c | x | error
Statements s ::= x B e
Programs p ::= · | p+

Non-Empty Programs p+ ::= s1; . . . ; sn
Types t ::= N
Contexts Γ ::= x : t , . . .

(no repeats)

(unordered)

Fig. 1. Comp Syntax

⊢ x := c ⊣ x : N
Const

y : t ⊢ x := y ⊣ x : t
Var

⊢ x := error ⊣ x : t
Error

Γ ⊢ p1 ⊣ x : t Γ′,x : t ⊢ p2 ⊣ y : t ′

Γ, Γ′ ⊢ p1;p2 ⊣ y : t ′
Seq

Γ ⊢ p ⊣ y : t ′

Γ,x : t ⊢ p ⊣ y : t ′
(Left)

Weakening

Γ,x1 : t ,x2 : t ⊢ p ⊣ y : t ′

Γ,x : t ⊢ p[x1,x2 7→ x] ⊣ y : t ′
(Left)

Contraction

Fig. 2. Comp Typing Rules

2 A SIMPLE LANGUAGE FOR EXPLORING STRICTNESS AND LAZINESS
We begin by presenting a language, called Comp, that we designed for exploring strictness and

laziness. As one can see from the syntax in Figure 1, Comp is very simple. We designed it to have

only the features that we need for our exploration.

The only possible statements in Comp are assignments, and a program is merely a list of

assignments. For further simplicity, we assume that every variable has an expression assigned to it

at most once in a Comp program. The only complexity in Comp comes from the expressions that

can be assigned to variables. First, constants can be assigned to variables. Second, one variable can

be assigned to another. Finally, variables can be assigned error, which should be thought of as an

expression that throws an error when it is evaluated.

The output of a Comp program is considered to be the value assigned to the last variable in the

program. For example, in the program x B 3;y B 4, the output is 4.

We provide a type system for Comp in Figure 2. The judgments used in the type system have

the form Γ ⊢ p ⊣ x : t , where Γ is a set of variable-type pairs. We read this as “given inputs with

types described by Γ, the output of p will be a value of type t assigned to x .” This makes Comp a

multiple-input, single-output language.

Note that the only possible type is N due to the simplistic nature of Comp. We present the type

system here because the typing proofs are illuminating, not because the types themselves are. For

instance, consider proving ⊢ x B 3;y B error ⊣ y : N. As part of this we will need to prove

x : N ⊢ y B error ⊣ y : N, which we cannot prove by directly appealing to the Error rule because

the Error rule requires an empty context. So instead, we must first apply another rule to get the

following proof:

⊢ y B error ⊣ y : N

x : N ⊢ y B error ⊣ y : N

This other rule discards the unneeded input variable x , and is called (Left) Weakening, so called

because it introduces a type on the left-hand side of the turnstile. Most languages admit weakening,

but interweave it throughout the typing rules of their language. We make it explicit here because it

is fundamental to one of the effects that form the central example of this paper.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:4 Andrew K. Hirsch and Ross Tate

x B c; p+ →s p+[x 7→ c]
x B y; p+ →s p+[x 7→ y]

x B error; p; y B e →s y B error

(a) Strict Comp Reduction Rules

p+; x B c →ℓ x B c
p; x B e; p ′; y B x →ℓ p; p ′[x 7→ e]; y B e

p+; x B error →ℓ x B error

(b) Lazy Comp Reduction Rules

Fig. 3. Comp Reduction Rules

Comp programs can be interpreted either strictly or lazily, and these interpretations can lead to

different results. Let us take a look at an example:

x B 3;y B error; z B x

In strict semantics, assignments are evaluated from left to right. Thus, the example program

assigns 3 to x , and then evaluates the error assigned to y. This causes the program to throw an

error, stepping immediately to z B error as the output of the program.

In lazy semantics, an assignment is only evaluated when a variable is needed, rather than each

assignment being evaluated in left-to-right order. Thus, the program looks at the assignment to the

final variable, z, and notices that x is needed to compute the final result. It then evaluates x B 3

and assigns 3 to z. At this point, z no longer needs any other variables to compute its final value, so

the whole program steps immediately to z B 3 without executing any other assignments. Notably,

since y is not needed at any point, the assignment of error to y is never executed, keeping the error

from being thrown. (This form of laziness is call-by-need, which is equivalent to the more-common

call-by-name [Ariola et al. 1995; Maraist et al. 1995] in this case.)

We can formalize these two interpretations using the reduction rules in Figure 3. In Figure 3a,

we see the strict rules, which go through a program from left to right, substituting variables with

values, and jumping to the end when an error is encountered. The lazy rules, in Figure 3b, go

through the program from right to left, only substituting variables when needed for the final result.

Since Comp lacks functions, it might seem surprising that Comp can have differing strict and

lazy interpretations of programs. One of the central results of this paper is that strictness and

laziness can be described as arising from the interaction of effects during program composition. In

previous works, programs were composed through function application [Ariola et al. 1995; Levy

2001; López-Fraguas et al. 2007; Maraist et al. 1995; Plotkin 1975; Sabry and Wadler 1996; Wadler

2003]. In Comp, programs are composed by being set next to each other and joined by a semicolon.

The semicolon-based syntax for composition makes the connection between Comp programs and

category theory clear. Category theory is used to study the compositional structure of languages.

This makes it useful in our goal of describing strictness and laziness as arising from the interactions

of effects during composition. Comp types and programs form a category, although some care must

be taken because Comp programs have multiple inputs. Technically this requires monoidal category

theory [Bénabou 1963; Mac Lane 1963], multicategory theory [Lambek 1969; Leinster 1998], or (in

order to generalize to multiple outputs) polycategory theory [Szabo 1975]. This generalization is

straightforward, but requires much technical detail, so we do not present it here.

As a refresher, a category D is a collection |D| of objects along with, for every pair of ob-

jects a and b ∈ |D|, a collection D(a,b) of morphisms. For a morphism f ∈ D(a,b), we say that

a is the domain of f and that b is the codomain of f . Categories must have an identity mor-

phism ida ∈ D(a,a) for every object a ∈ |D|. Moreover, it must be possible to compose morphisms,

so that if f ∈ D(a,b) and д ∈ D(b, c), then there is a morphism f ;д ∈ D(a, c).1 This composition

1
Note that we use diagram-order composition f ;д instead of function-order composition д ◦ f .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:5

operation must be associative (so (f ;д);h = f ; (д;h)), and the identity morphismmust be an identity

for composition (so ida ; f = f = f ; idb for any f ∈ D(a,b)). We write f : a → b for f ∈ D(a,b). In
Section 5, we use this connection to category theory to give formal semantics to effectful languages.

3 CONSUMER CHOICE AND PRODUCER CHOICE
We have seen that Comp programs can be interpreted either strictly or lazily, and that this indeed

leads to different results. Now, let us investigate why. Consider again the example Comp program

x B 3;y B error; z B x

Reviewing our earlier reasoning, we can pinpoint why the strict interpretation of this program and

the lazy interpretation of this program are different. The expression error is assigned to y, but y is

not used to compute the final result. This means that the lazy reduction rules will not throw an

error, since they will never evaluate the assignment to y. On the other hand, the strict reduction

rules will throw an error, since they evaluate each assignment regardless of whether it is needed.

In general, the programs for which the strict and lazy interpretations lead to different results

are exactly those with errors that are not used to compute the final result. These programs will

have the error discarded by the lazy interpretation, so no error is ever thrown. However, the strict

interpretation never throws away any assignment, so an error will be thrown.

Looking at the typing proofs for our example program, we can see that there are typing rules

that tell us exactly when these two concepts are in play.

⊢ x B 3 ⊣ x : N

⊢ y B error ⊣ y : N
Error

x : N ⊢ z B x ⊣ z : N

x : N,y : N ⊢ z B x ⊣ z : N
Weakening

x : N ⊢ y B error; z B x ⊣ z : N

⊢ x B 3;y B error; z B x ⊣ z : N

Notice the two rules we have labeled: Error and Weakening. The Error rule tells us that an

error is assigned to a variable, while the Weakening rule tells us that a variable is discarded.

Note that neither the Error rule nor the Weakening rule is reflected in the types of the

program, since the only type in Comp is N. Instead, they tell us something about the internals of

the program. The Error rule tells us that some natural-number output is never actually provided.

The Weakening rule tells us that some input is never actually used.

Both rules correspond to effects that are actually fundamental to strictness and laziness. To see

this, note that for any program needing at most one of the two rules/effects, the strict and lazy

interpretations lead to the same result.

The effect of not providing an output we call producer choice (of quantity) because it is the ability
for a program to choose how many times it will provide an output. In the case of Comp, programs

are limited to choosing to produce an output zero times or one time. The effect of dropping an

input we call consumer choice (of quantity) because it is the ability for a program to choose how

many times it will consume an input. In Comp, programs can choose to use inputs as many times

as they want. The bottom rule in Figure 2, known as (Left) Contraction , allows a program to use

a variable more than once. This provides another form of consumer choice.

Producer choice describes how output is produced. We refer to effects that describe how output

is produced as producer effects. One usually uses a categorical construct called a monad to give

semantics to producer effects [Moggi 1989; Wadler and Thiemann 2003]. That is, if D is a category

(such as Set or CPO) in which pure programs in a language can be interpreted, producer-effectful

programs can be intepreted asmorphisms inDwith codomainMb, whereM is amonad andb is some

type. A monadM on a category D is a function on the objects of D along with two operators. The

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:6 Andrew K. Hirsch and Ross Tate

first operator is called the unit of the monad, and is written η. It specifies a morphism ηa : a → Ma
for each object a ∈ |D|. The second operator is called bind, and it maps each morphism f : a → Mb
to a morphism bind(f) : Ma → Mb. These must satisfy the following equations:

• idMa = bind(ηa) for all a ∈ |D|

• ηa ; bind(f) = f for all f : a → Mb
• bind(f); bind(д) = bind(f ; bind(д)) for all f : a → Mb and д : b → Mc

Consumer choice does not describe how output is produced, but rather it describes how in-

put is consumed. Thus, rather than being a producer effect, it belongs to the class of consumer
effects. Consumer effects are usually given semantics through a categorical construct called a

comonad [Brookes and Geva 1992; Petricek et al. 2013, 2014; Uustalu and Vene 2008], which is

the dual of a monad. That is, if D is a category in which pure programs in some language can be

interpreted, consumer-effectful programs can be interpreted as morphisms in D with domain Ca,
where C is a comonad and a is some type. Formally, a comonad C on a category D is a function

on the objects of D along with counit and cobind operations. The counit, written ϵ , specifies a
morphism ϵa : Ca → a for each object a ∈ |D|, while cobind maps each morphism f : Ca → b to

a morphism cobind(f) : Ca → Cb. These must satisfy the following equations:

• idCa = cobind(ϵa) for all a ∈ |D|

• cobind(f); ϵb = f for all f : Ca → b
• cobind(f); cobind(д) = cobind(cobind(f);д) for all f : Ca → b and д : Cb → c

Producer choice is often given semantics through the Maybe monad. Values of type Maybe t are
either Nothing, representing choosing not to provide an output, or Some v , where v is of type t ,
representing choosing to produce an output. However, it is more difficult to give a simple description

of a comonad for consumer choice. Instead of attempting to do so computationally, we first turn to

the world of logic. We will see that classical linear logic contains a comonad representing consumer

choice and a complementary monad representing producer choice. By studying the comonad and

the monad of classical linear logic, we can develop a comonad that represents consumer choice in

Comp and a monad that represents producer choice in Comp.

4 CAPTURING CONSUMER CHOICE AND PRODUCER CHOICE
The weakening and contraction rules of Comp are inspired by similar rules from sequent calculus

for classical logic, also called (Left) Weakening and Contraction [Gentzen 1934, 1935]. Just

as Weakening and Contraction provide consumer choice in Comp, classical logic’s versions

of Left Weakening and Contraction provide consumer choice in classical logic. It also has a

Right Weakening rule, which inspired the Error rule of Comp since, in Comp, errors produce

no output. This rule provides producer choice in classical logic. In fact, classical logic also has a

Right Contraction rule that allows outputs to be produced more than once, just as the Left Con-

traction rule allows Comp (and classical logic) to use an input more than once. This expands the

capabilities of producer choice in classical logic compared to producer choice in Comp.

On the other hand, (classical) linear logic is pure with respect to both consumer choice and

producer choice [Girard 1987]. That is, it has no Contraction orWeakening rules. Instead, linear

logic provides a comonad ! (which is pronounced “bang” or “of course”) to capture consumer choice

in classical logic, and a monad ? (which is pronounced “query” or “why not”) to capture producer

choice in classical logic [Girard 1987].

We framed our discussion of capturing effects around categories, and we can see both classical

logic and linear logic as categories. For classical logic, the objects of this category are formulae

of classical logic, and the morphisms are (equivalence classes of) classical-logic proofs. For linear

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:7

logic, the definition of the category is similar but uses formulae and proofs from linear logic instead.

As mentioned above, we represent proofs using Gentzen’s sequent calculus [Gentzen 1934, 1935].

Recall that a sequent is a pair of multisets of formulae Γ and ∆, written Γ ⊢ ∆. In classical logic,

we interpret this as saying that if all of the assumptions in Γ are true, then at least one of the

conclusions in ∆ is true. In linear logic, we treat that same sequent as a process that, given all of

the resources in Γ, provides all of the resources in ∆. Formulae in linear logic can be treated as

denoting resources rather than truth values because linear logic does not have producer choice or

consumer choice. In some sense, choice (of quantity) enforces the idea that classical-logic formulae

denote truth values. After all, the fact that a formula is true does not become invalid once someone

chooses to rely upon that fact. However, choice (of quantity) would allow processes to reproduce

and exhaust a resource without limit.

A category is more than a collection of objects and morphisms. In order to form a proper category,

we need a logical notion of identity, which is provided by Axiom, and of composition, which is

provided by Cut. The Axiom rule says that every hypothesis implies itself, or that every resource

produces itself. The Cut rule says that a φ provided by one proof can be supplied to another proof.

Axiom Cut

φ ⊢ φ

Γ ⊢ φ,∆ Γ′,φ ⊢ ∆′

Γ, Γ′ ⊢ ∆,∆′

But in order to be a category, these two rules must satisfy the identity and associativity laws,

and to achieve this one must use a more permissive notion of proof equality. We will not go into

the details, but consider cutting a proof with Axiom: this produces a new proof, even though it is

conceptually the same as the original proof. Both logics have a procedure called cut elimination,

which takes a proof that uses the Cut rule and finds a proof of the same sequent that does not use

the Cut rule. This process is non-deterministic, but for linear logic it turns out to still be confluent.

Using techniques like cut elimination, albeit after fixing a particular cut-elimination (i.e. reduction)

strategy for classical logic, one can develop appropriate notions of proof equality for both logics.

With the principles of classical logic and linear logic in hand, we can proceed to show how linear

logic captures consumer choice and producer choice in classical logic. We start with classical logic

and show how it exhibits both consumer choice and producer choice. Then we continue with linear

logic and show how it defines a comonad and a monad that intuitively allow the same kinds of

proofs that classical logic admits using consumer choice and producer choice. We finally briefly

discuss how to give semantics to effectful proofs from classical logic using linear logic.

Classical logic enables consumer choice and producer choice via the so-called structural rules.
There are four structural rules in classical logic arising from two binary choices: left vs. right, and

weakening vs. contraction. The Left Weakening rule says that a proof does not need to use all of

its assumptions. The Left Contraction rule says that a proof can use its assumptions multiple

times. The Right Weakening rule says that we can prove either ψ or φ if we can prove ψ . The
Right Contraction rule says that we can prove φ true if we can prove φ or φ true. A formula can

be consumed or produced more than once by using contraction, and can be consumed or produced

zero times by using weakening.

C
la
ss
ic
al

Lo
gi
c

Left

Weakening

Γ ⊢ ∆

Γ,φ ⊢ ∆

Left

Contraction

Γ,φ,φ ⊢ ∆

Γ,φ ⊢ ∆

Right

Weakening

Γ ⊢ ∆

Γ ⊢ φ,∆

Right

Contraction

Γ ⊢ φ,φ,∆

Γ ⊢ φ,∆

It would not make sense to have a logic of resources where the structural rules held. For

instance, the Right Weakening rule would allow a process to create a resource out of nothing,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:8 Andrew K. Hirsch and Ross Tate

and Left Contraction would allow a process to exhaust twice as many resources as it was given.

However, it might seem strange that Left Weakening and Right Contraction are not allowed.

To see why they are not allowed, note that linear logic views debt as a form of resource. This allows

it to encode a function from A to B as a debt of an A that, when paid, provides a B. This also means

the Left Weakening rule would allow the receiver of some debt to choose not to pay it. Similarly,

the Right Contraction rule would allow a process to halve the amount of debt it produces.

However, linear logic does allow controlled use of the structural rules through the exponen-
tials ! (“bang”) and ? (“query”). The “bang” exponential provides the consumer of a resource access

to the left structural rules. That is, a formula !φ can be duplicated or ignored on the left. The “query”

exponential provides the producer of a resource access to the right structural rules. That is, a

formula ?φ can be duplicated or ignored on the right. This is formalized by the following rules:

C
la
ss
ic
al

Li
ne

ar
Lo

gi
c

Left

Weakening

Γ ⊢ ∆

Γ, !φ ⊢ ∆

Left

Contraction

Γ, !φ, !φ ⊢ ∆

Γ, !φ ⊢ ∆

Right

Weakening

Γ ⊢ ∆

Γ ⊢ ?φ,∆

Right

Contraction

Γ ⊢ ?φ, ?φ,∆

Γ ⊢ ?φ,∆

One also eventually wants to actually produce a !φ or consume a ?φ. Linear logic includes the
rules Right Promotion, which produces a !φ, and Left Promotion, which consumes a ?φ.2

Right Promotion Left Promotion

!Γ ⊢ φ, ?∆

!Γ ⊢ !φ, ?∆

!Γ,φ ⊢ ?∆

!Γ, ?φ ⊢ ?∆

Note that the promotion rules restrict their contexts. To see why, imagine that p is a sequent of

the form Γ ⊢ φ,∆. That is, p is a process that uses Γ to produce φ and ∆. Imagine also that q is a

sequent of the form Γ′, !φ ⊢ ∆′
. One might naïvely promote p and compose it with q along !φ to get

a judgment of the form Γ, Γ′ ⊢ ∆,∆′
. Suppose q chooses to use Left Weakening to indicate that it

does not want the !φ resource, so the promotion of p must not provide that resource. In linear logic,

the only way to do this is simply to not execute p. However, this means that Γ is never consumed

and ∆ is never produced. Thus, all resources in Γ need to be ! resources and all resources in ∆ need

to be ? resources so that we can choose not to produce or consume them.

Contrast this with the final rules involving the exponentials: the dereliction rules.

Left Dereliction Right Dereliction

Γ,φ ⊢ ∆

Γ, !φ ⊢ ∆

Γ ⊢ φ,∆

Γ ⊢ ?φ,∆

Left Dereliction allows a proof to use a !φ by using a single copy of φ. Similarly, Right Dere-

liction allows a proof of ?φ to produce a single copy of φ. Here, there are no restricted contexts.

Instead of needing to respond to the choices of other proofs, these rules represent making a choice.

Note that the dereliction and promotion rules are exactly the rules that we need to make ! a

comonad and ? a monad. We can construct the counit for ! and the unit for ? using dereliction.

Similarly, we can construct the cobind for ! and the bind for ? using promotion.

Counit Unit Cobind Bind

φ ⊢ φ

!φ ⊢ φ

φ ⊢ φ

φ ⊢ ?φ

!φ ⊢ ψ

!φ ⊢ !ψ

φ ⊢ ?ψ

?φ ⊢ ?ψ

Using cut elimination, one can prove that these constructions satisfy the comonad and monad laws.

2
We use the notation !Γ = {!ψ | ψ ∈ Γ } and ?∆ = {?ψ | ψ ∈ ∆}.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:9

At this point, we have a comonad ! and a monad ? that seem to capture the ideas of consumer

choice and producer choice, respectively. However, we only have an informal computational

interpretation, whereas we need to have a formal computational interpretation to apply them

to Comp. Moreover, we previously discussed giving semantics to effectful programs by giving

semantics to pure programs in some category, and then interpreting effectful programs using

either a monad or a comonad. So in order to give semantics to classical-logic proofs as effectful

programs, we must be able to give pure proofs—that is, proofs that do not use weakening or

contraction—semantics in some category. That category is the category of linear-logic proofs.

It is not difficult to show how to embed pure classical-logic proofs into linear logic. However, we

must then be able to use the comonad ! and the monad ? to embed classical-logic proofs that do

use weakening or contraction into linear logic. As we discussed in the introduction, there are at

least three ways to give semantics to a program with two effects, where one of the effects is given

semantics via a comonad and the other is given semantics via a monad. The first uses a distributive

law to describe the interactions of effects when programs are composed. The other two are the

layerings, which do not use a distributive law.

Girard [1987], who invented linear logic, tried to embed classical-logic proofs into linear logic.

However, he was only able to succeed with cut-free proofs. This is quite unsatisfying since, in

programming-language terms, this is the equivalent of only being able to translate values. He

was unable to embed proofs containing Cut because his method of embedding classical logic into

linear logic corresponds to the technique for giving semantics with both kinds of effects that uses

distributive laws. However, there is no distributive law between ! and ?, as we will see shortly, and

so he had no way to compose, i.e. cut-eliminate, his translations.

Eventually, Girard was able to give a denotational semantics of classical logic using the semantics

of classical linear logic using a technique known as polarization [Girard 1991]. (We discuss further

work following on Girard’s polarization technique in Section 7.6). However, syntactic embeddings

of classical logic into classical linear logic were not provided until Schellinx [1994] was able to give

two embeddings of classical logic into classical linear logic including proofs containing Cut. His

methods of embedding correspond to the layerings. He was able to embed proofs that contained

Cut because the layerings do not rely on a distributive law for composition. Consequently, one can

amusingly view classical logic as effectful linear logic, and the next section will talk about effectful

languages as abstract systems.

5 EFFECTFUL LANGUAGES AND THEIR SEMANTICS
In this section, we develop a linguistic metatheory for languages with two effects, where one effect

can be given semantics using a monad and the other effect can be given semantics using a comonad.

In order to develop such a metatheory, we focus on languages that can express the monad and

comonad that give semantics to their effects. However, the categorical constructions are the same

when the language, like Comp, cannot internally express the monad and the comonad.

We start our discussion of effectful languages by looking at languages with just one effect. The

semantics we will be interested in here are standard, having been studied at length [Brunel et al.

2014; Filinski 2010; Marino and Millstein 2009; Moggi 1989; Petricek et al. 2013, 2014; Tate 2013;

Wadler and Thiemann 2003]. However, it is not common to see the linguistic assumptions made

explicit, so this should be of some interest even to seasoned experts.

We then move on to discuss languages with two effects. The semantics here are less-commonly

discussed, although they have been discovered before [Brookes and van Stone 1993; Gaboardi

et al. 2016; Power and Watanabe 2002]. Furthermore, we discuss the novel linguistic metatheory of

languages with two effects.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:10 Andrew K. Hirsch and Ross Tate

idτ : τ → τ

p : τ1 → τ2 q : τ2 → τ3

p;q : τ1 → τ3

p : τ1 → τ2

p : τ1

ε
−→ τ2

p : τ1

ε
−→ τ2 q : τ2

ε
−→ τ3

p;q : τ1

ε
−→ τ3

p : τ1

ε
−→ τ2

idτ1
;p = p

p : τ1

ε
−→ τ2

p; idτ2
= p

p : τ1

ε
−→ τ2 q : τ2

ε
−→ τ3 r : τ3

ε
−→ τ4

p; (q; r) = (p;q); r

Fig. 4. Rules of Effectful Languages

Note that in the metatheory we present here, effects ε are not necessarily part of the types τ ;
instead, they are in a sense an orthogonal classification of programs. In particular, whereas types

describe the kind of data that comes in and out of a program, effects describe the internal process

of the program. Of course, there is sometimes an interplay between types and effects and, as we

will demonstrate, the precise form of this interplay often dictates whether the effect is a producer
effect (i.e. a monadic effect) or a consumer effect (i.e. a comonadic effect).

5.1 Singly-Effectful Languages
We refer to languages with only one effect as singly-effectful. These include languages where

effects can be captured by either a monad or a comonad. However, capturing effects in either way

requires linguistic assumptions beyond having effectful programs. The core linguistic assumption

of singly-effectful programs is that some programs are effectful, while others are pure. To denote

this, we write p : τ1 → τ2 when p is a pure program with input type τ1 and output type τ2, and

we write p : τ1

ε
−→ τ2 when p is effectful. The pure programs form a sublanguage of the effectful

language, meaning we can always consider a pure program p : τ1 → τ2 as an effectful program

p : τ1

ε
−→ τ2. The fact that pure programs form a sublanguage, rather than just a subset of programs,

means that pure programs are closed under composition and that the identity programs are pure.

Similarly, the effectful programs are also closed under composition, and the effectful identity is the

same as the pure identity. We call any language that admits at least the rules in Figure 4 “effectful.”

Note that Comp could intuitively be considered singly-effectful. We might consider any Comp

programs that never need the Error rule pure, while those that do are effectful. Alternatively,

we might consider any Comp programs that never need the Weakening rule pure, while those

that do are effectful. We could even consider a Comp program pure only if it is pure under both

definitions, and effectful if it is effectful under either. In order to formalize this intuition, we

would have to consider languages where types are actually typing contexts, such as those used in

Comp. This requires the extra structure of monoidal categories [Bénabou 1963; Mac Lane 1963] or

multicategories [Lambek 1969; Leinster 1998]. This generalization is straightforward, but requires

much technical detail, so we do not present it here.

However, considering Comp merely as an effectful language does not give us much of a semantic

“handle” on the language. The only semantic outcome of a singly-effectful language is a category of

pure programs, and a category of effectful programs, with an embedding of the pure programs into

the effectful programs. In order to get monads and comonads, we have to delve deeper.

5.1.1 Producer Effects. A language with a producer effect is one that, in addition to admitting

the rules in Figure 4, is able to have effectful programs be “thunked,” turning them into pure

programs. Specifically, if p is an effectful program with type τ1

ε
−→ τ2, then there is some pure

program ⌊p⌋ : τ1 → Mτ2, whereM is some function on types. For instance, if ε is the effect “might

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:11

p : τ1

ε
−→ τ2

⌊p⌋ : τ1 → Mτ2 execτ : Mτ
ε
−→ τ

p : τ1

ε
−→ τ2

⌊p⌋ ; execτ2
= p

p : τ1 → Mτ2⌊
p; execτ2

⌋
= p

Fig. 5. Rules of Producer Effectful Languages

throw an error,” then M is Maybe. If p throws an error, then ⌊p⌋ returns Nothing. Otherwise if p
returns v , then ⌊p⌋ returns Some v .
Intuitively, if ⌊p⌋ returns a value of type Mτ , then that value captures all of the effects that

would happen if we were to run p. Consequently, producer-effectful languages have an effectful

program execτ : Mτ
ε
−→ τ that runs the effects captured inMτ . Thus, if ε is the effect “might throw

an error,” execτ will throw an error if its input is Nothing, and will return v if its input is Some v .
We formalize the rules for producer effects in Figure 5. Any language that admits these rules

in addition to the rules in Figure 4 is producer-effectful, and ε is a producer effect. This “thunk-
and-exec” view of effects comes from Tate [2013] and is analogous to the “reify-and-reflect” view

of Filinski [1999, 2010].

M must be a Monad. It is possible to formally show thatM must be a monad in any producer-

effectful language. We need to build η and bind, and to show that the equations of a monad hold. To

build η, we use ⌊idτ ⌋. Recall that idτ : τ → τ and that pure programs can be turned into effectful

programs, so idτ : τ
ε
−→ τ . Thus, ⌊idτ ⌋ has signature τ → Mτ , as desired. For bind , we have to do

something more complicated: bind(f) =
⌊
execτ1

; f ; execτ2

⌋
, where f : τ1 → Mτ2. This executes

its input effects, runs f , and then executes the output of f , essentially combining the effects before

capturing them all in one large thunk. The equations for monads follow from the equations for

thunks and exec.

Structure for Producer-Effectful Programs. Every producer-effectful program f : τ1

ε
−→ τ2 corre-

sponds to a morphism ⌊ f ⌋ : τ1 → Mτ2 in the category of pure programs. It is also a small exercise

to show that ⌊p;q⌋ = ⌊p⌋ ; bind(⌊q⌋) for any producer-effectful programs p and q. This shows that
the category of producer-effectful programs is the Kleisli category forM , denoted KM . We formally

define KM for a monadM on a category D as follows:

• The objects of KM are the same as the objects of D.
• The morphisms from a to b in KM are the morphisms from a toMb in D.
• The identity morphisms ida : a → a in KM are the unit of the monad ηa : a → Ma in D.
• For any f : a → b and д : b → c in KM , the composition f ;д in KM is f ; bind (д) in D.

Theorem 1. Let L be a producer-effectful language, and let D be a category that gives semantics
to the pure programs in L. Let M be a monad on D corresponding to the function on types M with
appropriate unit and bind. Then KM gives semantics to the producer-effectful programs in L.

Furthermore, the pure programs inL form a category D, and the function on typesM forms a monad
on that category. The Kleisli category KM corresponding to this choice of D andM is isomorphic to
the category of producer-effectful programs in L.

In fact, the requirements of the first half of Theorem 1 are stronger than necessary. The monad

M does not need to be expressible within the language L itself, it just needs to have appropriate

corresponding structure on D. Such a situation is more in line with how Moggi [1989] and Wadler

and Thiemann [2003] use Kleisli categories to give semantics to effectful languages. The second

half of the theorem, which states that producer effects are necessarily monadic, comes from Tate

[2013] and does require that the function on typesM can be expressed within L.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:12 Andrew K. Hirsch and Ross Tate

p : τ1

ε
−→ τ2

⌈p⌉ : Cτ1 → τ2 coexecτ : τ
ε
−→ Cτ

p : τ1

ε
−→ τ2

coexecτ1
; ⌈p⌉ = p

p : Cτ1 → τ2⌈
coexecτ1

;p
⌉
= p

Fig. 6. Rules of Consumer Effectful Languages

This distinction is important, particularly for giving semantics to Comp. Comp’s type system

is too weak to express the necessary function on types, since it has only one type N. Thus, later
in the paper, we will develop another language, Proc, that is pure but has a more-expressive type

system that is capable of expressing the functions on types that capture the effects in Comp.

5.1.2 Consumer Effects. While producer effects have thunking that changes only the output

types, consumer effects have thunking that changes only the input types. That is, given a consumer-

effectful program p : τ1

ε
−→ τ2 there is some pure program ⌈p⌉ : Cτ1 → τ2 for some function on

typesC . For instance, ifp can use some extra information of type S , then ⌈p⌉ has signature τ1×S → τ2.

This program simply looks at the second component of its input whenever p uses that information.

We can think of consumer effects as “needing something extra,” while producer effects “make

something extra.” When ε is “may use extra information,”, i.e. may read some immutable state, this

is very direct: the environment provides an extra input of type S that p can use.

When we introduced producer effects, we had an intuition thatM captured all of the effects in

an effectful program, and that we could therefore execute M to get those effects back. A similar

intuition holds here: C captures all of the information that p needs to run. Co-execution, which
we denote via a program coexecτ : τ

ε
−→ Cτ , performs effectful operations in order to capture the

information necessary for C . In the case of using extra information, co-execution takes a value v ,
reads the state to get s , and then returns (v, s) : τ × S .

We formalize what it means to be a consumer effect in Figure 6. Any language that admits these

rules in addition to the rules in Figure 4 is consumer-effectful, and ε is a consumer effect.

C must be a Comonad. To formally show that C must be a comonad in any consumer-effectful

language, we construct ϵτ as ⌈idτ ⌉, and cobind(f) as
⌈
coexecτ1

; f ; coexecτ2

⌉
: Cτ1 → Cτ2 for any

pure program f : Cτ1 → τ2. In the case of using extra information, ϵτ : τ × S → τ takes a value of

the form (v, s) and returns v . In the same setting, cobind(p) takes a value of the form (v, s) and
runs p(v, s) to get v ′

, and then returns (v ′, s).

Structure for Consumer-Effectful Programs. We can also show that the category of consumer-

effectful programs is structured as the CoKleisli category for C , written KC . We formally define KC
for a comonad C on a category D as follows:

• The objects of KC are the same as the objects of D.
• The morphisms from a to b in KC are the morphisms from Ca to b in D.
• The identity morphisms id : a → a in KC are the counit of the comonad ϵa : Ca → a in D.
• For any f : a → b and д : b → c in KC , the composition f ;д in KC is cobind(f);д in D.

Theorem 2. Let L be a consumer-effectful language, and let D be a category that gives semantics
to the pure programs in L. Let C be a comonad on D corresponding to the function on types C with
appropriate counit and cobind. Then KC gives semantics to the consumer-effectful programs in L.
Furthermore, the pure programs in L form a category D, and the function on types C forms a

comonad on that category. The CoKleisli category KC corresponding to this choice of D and C is
isomorphic to the category of consumer-effectful programs in L.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:13

idτ : τ → τ

p : τ1

®ε
−→ τ2 q : τ2

®ε
−→ τ3

p;q : τ1

®ε
−→ τ3

p : τ1

®ε
−→ τ2

idτ1
;p = p

p : τ1

®ε
−→ τ2

p; idτ2
= p

p : τ1

®ε
−→ τ2

⌊p⌋ : τ1

®ε\{εp }
−−−−−→ Mτ2

execτ : Mτ
εp
−−→ τ

p : τ1

®ε
−→ τ2

⌊p⌋ ; execτ2
= p

p : τ1

®ε
−→ Mτ2 εp < ®ε⌊
p; execτ2

⌋
= p

p : τ1

®ε
−→ τ2

⌈p⌉ : Cτ1

®ε\{εc }
−−−−−→ τ2

coexecτ : τ
εc
−→ Cτ

p : τ1

®ε
−→ τ2

coexecτ1
; ⌈p⌉ = p

p : Cτ1

®ε
−→ τ2 εc < ®ε⌈

coexecτ1
;p
⌉
= p

p : τ1 → τ2

p : τ1

®ε
−→ τ2

Fig. 7. Formalization of Doubly-Effectful Languages

Again, the requirements in the first half of Theorem 2 are stronger than necessary. The comonadC
does not need to be expressible within the language L itself; it just needs to have appropriate corre-

sponding structure on D. This situation corresponds more closely to how Uustalu and Vene [2005,

2008] and Petricek, Orchard, and Mycroft [2013, 2014] give meaning to effectful programs. The sec-

ond half of Theorem 2 does requireC to be expressible inL, and follows from dualizing Tate [2013].

5.2 Doubly-Effectful Languages
While we have discussed producer effects and consumer effects in isolation, Comp has one of each

kind of effect. To discuss this, we move from singly-effectful languages to doubly-effectful languages.
A doubly-effectful language has both a producer effect εp and a consumer effect εc .

We give the linguistic assumptions of doubly-effectful languages in Figure 7. In our formalization,

every function arrow is labeled with a set of effects, ®ε . For concision, we omit the usual braces

delimiting sets. Depending on the effect set of a program, we refer to the program as “pure,”

“producer-effectful,” “consumer-effectful,” “singly-effectful,” or “doubly-effectful.”

Doubly-effectful languages have all of the features of both producer-effectful languages and

consumer-effectful languages. Furthermore, thunking has been extended to handle programs with

multiple effects. If p has type τ1

εc ,εp
−−−−→ τ2, then ⌊p⌋ has type τ1

εc
−→ Mτ2 and ⌈p⌉ has type Cτ1

εp
−−→ τ2.

The only subsumption rule in Figure 7 applies to only pure programs. Notably, subsumption rules

for singly-effectful programs are missing. This is because the three methods of giving semantics to

doubly-effectful programs differ by which such subsumption rules are admissible.

It is worth noting that the description of the linguistic assumptions of doubly-effectful languages

here is novel, as is the discovery that different subsumption rules correspond to different semantics.

5.2.1 Distributive Laws for Doubly-Effectful Languages. A common assumption is that producer-

effectful programs can be considered doubly-effectful, as can consumer-effectful programs. We

formalize this assumption with the two subsumption rules in Figure 8. These rules can be used

to build a distributive law. Let D be a category, with M a monad on D and C a comonad on D. A
distributive law ofM overC specifies a morphism σa : CMa → MCa for each object a ∈ |D|. These

must satisfy the following equations:

• cobind(f ;ηb);σb = cobind(f);ηCb for all f : Ca → b
• σa ; bind(ϵa ; f) = ϵMa ; bind(f) for all f : a → Mb
• cobind(σa ; bind(f));σb = σa ; bind(cobind(f);σb) for all f : Ca → Mb

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:14 Andrew K. Hirsch and Ross Tate

p : τ1

εp
−−→ τ2

p : τ1

εc ,εp
−−−−→ τ2

p : τ1

εc
−→ τ2

p : τ1

εc ,εp
−−−−→ τ2

Fig. 8. Subsumption for Distributive Doubly-Effectful Languages

In fact, there are two candidates for building στ : we could use either ⌊⌈execτ ; coexecτ ⌉⌋ or
⌈⌊execτ ; coexecτ ⌋⌉. These come from the intuition that a distributive law is a doubly-effectful

program that convertsM and C into their respective effects, made pure. Both of these candidates

turn out to be the same, thanks to the following:

Lemma 1. Let p be any program in a distributive doubly-effectful language. Then ⌊⌈p⌉⌋ = ⌈⌊p⌋⌉.

Proof. Both ⌊⌈p⌉⌋ and ⌈⌊p⌋⌉ contain the same information. In particular, the following holds

(where the well-typedness of the terms requires the subsumption rules in Figure 8):

coexecτ1
; ⌊⌈p⌉⌋ ; execτ2

= coexecτ1
; ⌈⌊p⌋⌉ ; execτ2

= p

This equality implies ⌊⌈p⌉⌋ equals ⌈⌊p⌋⌉ by applying the following implications:

∀q,q′ : τ
®ε
−→ Mτ ′. εp < ®ε =⇒ q; execτ ′ = q

′
; execτ ′ =⇒ q = q′

∀q,q′ : Cτ
®ε
−→ τ ′. εc < ®ε =⇒ coexecτ ;q = coexecτ ;q′ =⇒ q = q′

which are provable from the rules in Figure 7:

q; execτ ′ = q
′
; execτ ′ =⇒ q = ⌊q; execτ ′⌋ = ⌊q′; execτ ′⌋ = q

′

coexecτ ;q = coexecτ ;q′ =⇒ q = ⌈coexecτ ;q⌉ = ⌈coexecτ ;q′⌉ = q′ □

Lemma 1 lets us write [p] = ⌊⌈p⌉⌋ = ⌈⌊p⌋⌉ without ambiguity. Moreover, it means that we

have only one candidate for στ , which is [execτ ; coexecτ]. The laws of thunking, executing, and
co-executing make this a distributive law.

5.2.2 Semantics Based on Distributive Laws. In order to build a distributive law this way, the

doubly-effectful language must admit the rules in Figure 8. To see why, consider the composition

execτ ; coexecτ . By the rules of Figure 7, two programs can be composed only when their effect

sets are the same. In order to compose execτ with coexecτ , we must lift execτ from a producer-

effectful program to a doubly-effectful program, and similarly with coexecτ . The subsumption

laws of Figure 8 are required to do this.

Because our description of doubly-effectful languages is novel, so is this argument that admitting

the “obvious” subsumption rules in Figure 8 allows us to build a distributive law. This gives a

description of language features that allow the standard distributive-law-based semantics to work.

Just as the monad and comonad laws enable us to describe and compose producer-effectful

programs and consumer-effectful programs solely using pure programs, a distributive law enables us

to describe and compose doubly-effectful programs solely using pure programs. Given a category D,
with a monadM , a comonad C , and a distributive law σ ofM over C , we develop a category Kσ

C,M
such that Kσ

C,M (a,b) = D(Ca,Mb). The distributive law is necessary to build the composition

operator for this category. To see why, consider f : a → b and д : b → c in Kσ
C,M . Let us write

[f] : Ca → Mb and [д] : Cb → Mc for f and д considered as morphisms of D. Then, what
should f ;д be? We can try to do what we did for the Kleisli and CoKleisli categories, and get

cobind([f]) : Ca → CMb and bind([д]) : MCb → Mc , but there is still a type mismatch. However,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:15

if we have a distributive law σ , we can use it to fix this type mismatch, so that f ;д corresponds to

cobind([f]);σb ; bind([д]). This leads to the following definition:

• The objects of Kσ
C,M are the same as the objects of D.

• The morphisms from a to b in Kσ
C,M are the morphisms from Ca toMb in D.

• The identity morphisms ida : a → a in Kσ
C,M are defined as ϵa ;ηa : Ca → Ma in D.

• For f : a → b and д : b → c in Kσ
C,M , their composition is cobind(f);σb ; bind(д) in D.

Theorem 3. Let L be a doubly-effectful language admitting the subsumption rules in Figure 8,
and let D be a category that gives semantics to the pure programs in L. Let M be a monad on D
corresponding to the function on typesM with appropriate unit and bind, and let C be a comonad on
D corresponding to the function on types C with appropriate counit and cobind. Finally, let σ be a
distributive law ofM over C . Then Kσ

C,M gives semantics to the doubly-effectful programs in L.
Furthermore, the pure programs in L form a category D, the function on typesM forms a monad

on that category, the function on types C forms a comonad on that category, and the collection of
programs [execτ ; coexecτ] forms a distributive law σ ofM overC . The category Kσ

C,M corresponding
to this choice of D,M , C , and σ is isomorphic to the category of doubly-effectful programs in L.

Yet again, the requirements of the first half of Theorem 3 are stronger than necessary. Weakening

them gives a situation similar to that studied by Power and Watanabe [2002], Brookes and van

Stone [1993], and Gaboardi, Katsumata, Orchard, Breuvart, and Uustalu [2016]. The second half of

Theorem 3 is novel, and it requires L to admit the subsumption laws in Figure 8.

5.2.3 Linear Logic Lacks a Distributive Law. Girard’s attempt to embed classical-logic proofs into

linear logic embeds sequents of the form Γ ⊢ ∆ in classical logic as sequents of the form !Γ ⊢ ?∆ in

classical linear logic. This looks a lot like the development of Kσ
C,M . However, Girard was only able

to translate cut-free proofs of classical logic into linear logic using this method.

Recall that cut is how sequential composition is implemented in logic. Because Kσ
C,M relies on σ

to build composition, we might expect that there is a problem with building a distributive law in

linear logic. Indeed, there is no distributive law of ? over !.

Such a law would be a proof of the sequent !?φ ⊢ ?!φ for any φ. One might expect this to be

provable, given that one has free choice over how many inputs they request and how many outputs

they provide. In particular, one could opt to request no inputs and provide no outputs. However,

this would fail to satisfy the requirements of a distributive law. Unfortunately, the requirements of

a distributive law dynamically constrain just how many inputs and outputs need to be provided,

and one is inevitably forced to pick how many inputs they request before they know how many

outputs they need to provide or vice versa. More formally, the fact that a distributive law cannot

exist follows from Schellinx’s work [Schellinx 1994] and the upcoming Theorem 6.

Brookes and van Stone [1993] argue that it is appropriate to use distributive laws in the semantics

of effects because, in their exploration of effects, every application had a distributive law.
3
Since

then, distributive laws have been the focus of research in giving semantics to doubly-effectful

languages [Gaboardi et al. 2016; Power and Watanabe 2002]. However, the fact that strictness

and laziness arise from a pair of effects where the relevant monad and comonad do not have a
distributive law suggests that exploring other semantics is sometimes necessary.

5.2.4 The Monad-Prioritizing Layering. Consider a strict interpretation of a language where

programs have consumer choice, and where producer choice is implemented by throwing errors.

In this language, we cannot embed arbitrary producer-effectful programs into the doubly-effectful

3
Brookes and van Stone do find monad-comonad pairs that do not have distributive laws. However, these pairs do not

correspond to known computational effects; rather, they are used in the study of domain theory.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:16 Andrew K. Hirsch and Ross Tate

p : τ1

εp
−−→ Cτ2

p : τ1

εc ,εp
−−−−→ Cτ2

p : τ1

εc
−→ τ2

p : τ1

εc ,εp
−−−−→ τ2

Fig. 9. Subsumption for Strict Doubly-Effectful Languages

language. To see why, recall that execτ for throwing errors examines a v of type Maybe τ and, if

it is Some v , it returns v . Otherwise, v is Nothing, and execτ throws an exception. Since it may

throw an exception, execτ is producer-effectful.

Suppose we have a program p that may or may not throw an exception, and a program q that may

or may not use its input. If we assume subsumption as in Figure 8, then we can treat both p and q
as doubly-effectful programs and compose them into p;q. This program must then be semantically

equivalent to ⌊p⌋ ; exec;q, and therefore to ⌊p⌋ ; coexec; ⌈exec;q⌉. Now consider the program

⌈exec;q⌉. It takes as input aCMτ . Furthermore, if p is actually error so that theM inCMτ captures
an error, then p;q throws an error by strictness, and so ⌈exec;q⌉ must throw an error due to the

established semantic equivalences, and it must only throw an error if p does. So no matter what

q does, ⌈exec;q⌉ must extract the Mτ from the CMτ , i.e. apply left dereliction. To see why this

is a problem, suppose that p does not throw an exception, so that the Mτ is actually a τ , and
furthermore suppose that τ is actually some debt, and that q, rather than addressing this debt, has

the consumer effect because it explicitly ignores the debt. Then because ⌈exec;q⌉ had to examine

the input to determine whether or not to throw an exception, it also forced us to have this debt

that is unsoundly left unpaid. Thus it is unsound to allow p and q to be composed together in this

strict language, which means we cannot assume subsumption as in Figure 8.

Instead, strict languages can only use the weaker subsumption rules in Figure 9. The restriction

is that producer-effectful programs can only be given the additional consumer effect if they are

returning a C value. This C value ensures that subsequent consumer-effectful programs still have

a way to discard their input even if the producer-effectful program needs to examine its own.

Note that there is no restriction on when consumer-effectful programs can be given the additional

producer effect. This might be surprising, but we can use layering to prove that this is sound.

When we gave semantics to doubly-effectful programs via distributive laws, we thunked doubly-

effectful programs to pure programs by thunking the effects in either order. That is, p : τ1

εc ,εp
−−−−→ τ2

was thunked as [p] : Cτ1 → Mτ2. However, for strict languages, we thunk in a special way: if

p : τ1

εc ,εp
−−−−→ τ2 is a doubly-effectful program, TpU : Cτ1 → MCτ2 is the thunked program where the

inner C in the output type enables subsequent programs to drop their inputs even after examining

the effects captured in theM . We define TpU as

[
p; coexecτ2

]
4
.

We would like to give structure to the category of doubly-effectful languages in this setting. We

can do so with a similar trick as before: given a category D with a monadM and a comonad C , we
develop a category KM

C,M such that KM
C,M (a,b) = D(Ca,MCb). Moreover, composition is simple: we

just use bind, just as in a Kleisli category. This leads to the following definition:

• The objects of KM
C,M are the same as the objects of D.

• The morphisms from a to b in KM
C,M are the morphisms from Ca toMCb in D.

• The identity morphisms ida : a → a in KM
C,M are defined as ηCa in D.

• For any f : a → b and д : b → c in KM
C,M , their composition is f ; bind(д) in D.

4
This notation is unambiguous here because the proof of Lemma 1 can be adapted to programs in strict doubly-effectful

languages with output types of the form Cτ .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:17

p : τ1

εp
−−→ τ2

p : τ1

εc ,εp
−−−−→ τ2

p : Mτ1

εc
−→ τ2

p : Mτ1

εc ,εp
−−−−→ τ2

Fig. 10. Subsumption for Lazy Doubly-Effectful Languages

Note that bind and not cobind is used in the definition of composition, so the producer effect

will always be in control of the composition. For instance, if M is Maybe, and p throws an error,

then the entirety of p;q will throw an error because Tp;qU = TpU; bind(TqU), making the latter

half of the program propagate the error. For that reason, we refer to this as the monad-prioritizing

or strict semantics for the effects.

Theorem 4. Let L be a doubly-effectful language admitting the subsumption rules in Figure 9,
and let D be a category that gives semantics to the pure programs in L. Let M be a monad on D
corresponding to the function on types M with appropriate unit and bind, and let C be a comonad
on D corresponding to the function on types C with appropriate counit and cobind. Then KM

C,M gives
semantics to the doubly-effectful programs in L.
Furthermore, the pure programs in L form a category D, the function on typesM forms a monad

on that category, and the function on types C forms a comonad on that category. The category of
doubly-effectful programs in L is a subcategory of the category KM

C,M corresponding to this choice
of D,M , and C .

Weakening Theorem 4 gives a situation similar to that studied by Brookes and van Stone [1993].

However, they did not apply this to effectful languages, and so did not discover the distributive

laws in Figure 9. Power and Watanabe [2002] also studied KM
C,M from a purely category-theoretic

perspective, but they did not connect to languages at all.

We need to be careful here: the category of doubly-effectful programs is not KM
C,M . Instead, it is a

subcategory of KM
C,M . To see why, consider the case where εc is reading state, and εp is throwing

errors. Then a program like λ(x , s). Some (x , s + 1) might exist, and is of type τ × S → Maybe (τ × S)
(where +1 is well-defined for S). However, this program does not denote any doubly-effectful

program in the language, since it changes the state rather than just reading the state.

5.2.5 The Comonad-Prioritizing Layering. By similar reasoning as in the previous subsection, we

cannot treat arbitrary consumer-effectful programs as doubly-effectful when using lazy semantics.

However, we can do so when said consumer-effectful programs consume anM . We consequently

weaken the subsumption rules of Figure 8 to those of Figure 10 (as opposed to those of Figure 9) for

lazy doubly-effectful languages.

We can now thunk doubly-effectful programs of the form p : τ1

εc ,εp
−−−−→ τ2 as VpW : CMτ1 → Mτ2

using the construction

[
execτ1

;p
]
5
, where theM in the input type enables previous programs to

not provide their outputs before providing the effects captured in theC . This leads to the following

definition of the category KC
C,M for a category D, a monadM on D, and a comonad C on D:

• The objects of KC
C,M are the same as the objects of D.

• The morphisms from a to b in KC
C,M are the morphisms from CMa toMb in D.

• The identity morphisms ida : a → a in KC
C,M are defined as ϵMa in D.

• For any f : a → b and д : b → c in KC
C,M , their composition is cobind(f);д in D.

5
This notation is unambiguous here because the proof of Lemma 1 can be adapted to programs in lazy doubly-effectful

languages with input types of the form Mτ .

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:18 Andrew K. Hirsch and Ross Tate

Note that cobind and not bind is used in the definition of composition, so the consumer effect

will always be in control of the composition. For instance, if C is ! and q drops its input, then the

entirety of p;q will drop its input because Vp;qW = cobind(VpW); VqW, making the former half of

the program also drop its input. For that reason, we refer to this as the comonad-prioritizing or

lazy semantics for the effects.

Theorem 5. Let L be a doubly-effectful language admitting the subsumption rules in Figure 10,
and let D be a category that gives semantics to the pure programs in L. Let M be a monad on D
corresponding to the function on types M with appropriate unit and bind, and let C be a comonad
on D corresponding to the function on types C with appropriate counit and cobind. Then KC

C,M gives
semantics to the doubly-effectful programs in L.
Furthermore, the pure programs in L form a category D, the function on typesM forms a monad

on that category, and the function on types C forms a comonad on that category. The category of
doubly-effectful programs in L is a subcategory of the category KC

C,M corresponding to this choice
of D,M , and C .

Again, weakening this theorem gives a situation similar to that studied by Brookes and van

Stone [1993], although they did not study effectful languages. Power and Watanabe [2002] studied

KC
C,M purely categorically, but they did not connect to languages at all.

We need to be careful here: the category of doubly-effectful programs is not KC
C,M . Instead, it is a

subcategory of KC
C,M . To see why, consider the case where εc is reading state, and εp is throwing

errors. Then a program of type (Maybe N) × S → Maybe N could (regardless of the state) return

Nothing if the input is Some v and otherwise return Some 5 if the input is Nothing. However, this
program does not denote any doubly-effectful program in the language, since it turns errors thrown

earlier in the program into successes and successes into errors.

5.2.6 The Layerings in Linear Logic. Schellinx [1994] eventually found two translations of

classical logic into linear logic that can handle cuts. These correspond to the layerings. The first

translates a classical-logic sequent Γ ⊢ ∆ into the linear-logic sequent !Γ ⊢ ?!∆, and the second

translates the same classical sequent into the linear sequent !?Γ ⊢ ?∆. In particular, the first

translation uses ?-promotion to translate cuts, and the second translation uses !-promotion. This is

directly analogous to the use of bind versus cobind in the two layerings, so the first translation is

conceptually the “strict” translation, while the second is the “lazy” translation.

Note, however, that this requires generalizing the assumptions we have made so far. In particular,

linear logic is a multiple-input, multiple-output setting whereas the category theory we have

presented is a single-input, single-output setting. The categorical properties of ! and ? that allow

them to handle this change in setting can be found in Appendix A.

5.2.7 The Relationship between Distributive Laws and Layering. Using layering, we can prioritize

either the producer effect or the consumer effect. However, the definition ofKσ
C,M prioritizes neither,

since it uses a distributive law. We would like to compare these semantics, but they have different

types. Luckily, it is relatively easy to use η and ϵ to transform TpU and VpW to have the same type

as [p]. Theorem 6 states that the three semantics are equivalent provided a distributive law exists.

Theorem 6. For any effectful program p : τ1

εc ,εp
−−−−→ τ2 in a distributive doubly-effectful language, the

following are all equal (whereMϵτ is ⌊execCτ ; ⌈idτ ⌉⌋ and Cητ is ⌈⌊idτ ⌋ ; coexecMτ ⌉).

TpU;Mϵτ2
= [p] = Cητ1

; VpW

Analogously, for any monadM and comonadC on a category D with a distributive law σ ofM overC
(so that Kσ

C,M is a well-defined category), KM
C,M , Kσ

C,M , and KC
C,M are all isomorphic.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:19

The latter half of Theorem 6 is given by Power and Watanabe [2002], and with the former half we

directly connect this to doubly-effectful languages. Theorem 6 implies that the layerings are strictly

more expressive than distributive laws. In particular, any monad and comonad whose monad-

prioritizing and comonad-prioritizing layerings differ semantically cannot have a distributive law,

including the monad and comonad we define in the next section to formalize our insight about

strictness and laziness. Furthermore, the layerings apply to any situation where a distributive law

applies and arrive at the same result. Thus, it is never necessary to identify a distributive law to

give semantics to a doubly-effectful language, though it still can be useful.

This also provides the proof that linear logic has no distributive laws. If there were, then there

would not be a meaningful difference between Schellinx’s [1994] two translations of classical logic.

6 GIVING SEMANTICS TO CHOICE IN COMP
In Section 5, we considered effectful languages in which the effects could be thunked into a monad

and/or comonad. This allowed us to develop metatheories about when effects are necessarily

monadic or comonadic, and about when distributive laws can or cannot exist. However, not all

effectful languages are expressive enough to express their effects internally. Comp is an example.

Comp has consumer choice and producer choice, but only one type N, so it is not able to represent

those effects as comonads and monads within its own type system.

This problem is addressed by formalizing an effectful language L in terms of another language P.

This other language is typically pure in the sense that it may exhibit more desirable properties like

confluence or termination. Furthermore, this other language is typically more expressive, especially

with respect to its type system. In particular, the language’s type system is capable of encoding

various comonads and monads that can be used to formalize the semantics of various effects.

So to give a categorical semantics for a doubly-effectful languageL, one picks a “pure” languageP

along with a comonad C and a monadM on P. Then one decides upon a Kleisli-like category that

captures the desired interaction of effects. In particular, KM
C,M from Section 5 captures the monad-

prioritizing (strict) semantics, whereas KC
C,M captures the comonad-prioritizing (lazy) semantics.

The choice of category provides the semantics for sequentially composing programs in the effectful

language. Thus, after making this choice, one simply has to provide translations of the primitive

operations from the effectful language into this category, and the remainder of the semantics

will be derived from the categorical structure. Furthermore, because KM
C,M and KC

C,M have already

been proven to be well-formed categories, the derived semantics is guaranteed to sequentially

compose effectful programs in a manner that is associative and respects identities. Technically

these constructions only apply to single-input, single-output languages, but they are easy to extend

to multiple inputs and/or multiple outputs, the formalization of which is in Appendix A.

In the following sections we explicitly construct translations for Comp—one for strict semantics

and one for lazy semantics. But to do so, we first need a pure language with a comonad and monad

capable of representing consumer choice and producer choice. We develop such a language next.

6.1 A Language without Consumer or Producer Choice
Here we develop a language with neither consumer choice nor producer choice, instead using a

comonad ! and a monad ? to capture those effects. By translating Comp into this language we force

ourselves to explicitly commit to a particular interaction between these effects.

As suggested in Section 4, we use a computational model of linear logic that makes the effects

of Comp explicit. There are several such models to choose from. Perhaps the most common is

linear λ-calculus [Wadler 1990]. However, linear λ-calculus is based on intuitionistic linear logic,

so it does not model the ? exponential. The other obvious choice is π -calculus, which has been

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:20 Andrew K. Hirsch and Ross Tate

Channels x ,y, z, . . .
Constants c ::= 0 | 1 | . . .
Processes ρ,ν ::= ∅

| ρ1 ∥ ρ2

| y.init(c)
| x ⇌ y
| y.send()

| y.send(x)
| handle?x{ρ}
| x .req()

| x .req(y)
| x .req(!y1, !y2)

| supply
!y{ρ}

Types τ ::= N | !τ | ?τ
Contexts Γ,∆,Ξ ::= x : τ , . . .

(no repeats)

(unordered)

with the following syntactic identifications

ρ1 ∥ (ρ2 ∥ ρ3) ≡ (ρ1 ∥ ρ2) ∥ ρ3

ρ1 ∥ ρ2 ≡ ρ2 ∥ ρ1

∅ ∥ ρ ≡ ρ

Fig. 11. Proc Syntax

⊢ ∅ ⊣

Γ ⊢ ρ1 ⊣ ∆,Ξ Γ′,Ξ ⊢ ρ2 ⊣ ∆′

Γ, Γ′ ⊢ ρ1 ∥ ρ2 ⊣ ∆,∆′

⊢ y.init(c) ⊣ y : N

x : τ ⊢ x ⇌ y ⊣ y : τ

⊢ y.send() ⊣ y : ?τ

x : τ ⊢ y.send(x) ⊣ y : ?τ

!Γ,x : τ1 ⊢ ρ ⊣ y : ?τ2

!Γ,x : ?τ1 ⊢ handle?x{ρ} ⊣ y : ?τ2

x : !τ ⊢ x .req() ⊣

x : !τ ⊢ x .req(y) ⊣ y : τ

x : !τ ⊢ x .req(!y1, !y2) ⊣ y1 : !τ ,y2 : !τ

!Γ ⊢ ρ ⊣ y : τ

!Γ ⊢ supply
!y{ρ} ⊣ y : !τ

Fig. 12. Proc Typing Rules

shown to be a computational model for full classical linear logic [Abramsky 1994; Beffara 2006;

Bellin and Scott 1994; DeYoung et al. 2012; Milner et al. 1992; Wadler 2012]. However, π -calculus
was originally designed to study mobile processes [Milner et al. 1992], and the constructions used

to model terms of linear logic are complicated. We thus choose to build our own calculus, Proc,

based directly on classical linear logic, and specialized to our application.
6
Proc is essentially a

specialized fragment of π -calculus, and so our translations of Comp into Proc also translate Comp

into π -calculus. However, Proc, being more suited to our setting, has a pedagogical advantage.

6.1.1 Syntax and Typing Rules. Proc is a multiple-input, multiple-output language based on

parallel processes communicating through named channels, like π -calculus. Its syntax is presented
in Figure 11. In this figure, we consistently use x to refer to “input” channels, and use y to refer to

“output” channels, as an aid to the reader. For example, y.send(x) sends the input channel x onto

the output channel y. Note that, in order to simplify our presentations throughout the paper, we

treat ∥ as operating on multisets. Thus we treat ρ1 ∥ ρ2 as being syntactically identical to ρ2 ∥ ρ1,

as formalized among other syntactic identities by ≡ in Figure 11.

The typing rules for Proc are presented in Figure 12, once again using x for inputs and y for

outputs. We write Γ ⊢ ρ ⊣ ∆, where Γ and ∆ are disjoint contexts, to mean that ρ consumes the

channels in Γ and produces the channels in ∆. Intuitively, we can think of this as saying that ρ will

receive messages from the channels in Γ and send messages on the channels in ∆. Note, though,
that this is just an intuition. As with many process calculi, channels in Proc are bidirectional, so a

6
In particular, we take advantage of the lack of contraction for ? to simplify our syntax and reduce the number of Distribute

rules in our semantics. As a result, a judgment Γ ⊢ ρ ⊣ ∆ corresponds to

⊗
Γ ⊢

⊗
∆ rather than

⊗
Γ ⊢

˙
∆.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:21

consumer of a channel can just as well send messages on that channel, and likewise a producer can

receive messages.

The three simplest processes are y.init(c), x ⇌ y, and ∅. The process y.init(c) simply produces

the channel y by providing the constant c , representing variable initialization in Comp. The

process x ⇌ y is viewed as consuming x and producing y, but it simply forwards messages received

on either channel to the other, essentially unifying the two channels. The process ∅ does nothing

and has no inputs or outputs.

Parallel composition ∥ is the fundamental way to compose processes in Proc. Any channels

that two parallel processes have in common are implicitly connected together. Recall also that ∥ is

commutative, so the typing rule does not force a left-to-right order. To prevent potential resulting

ambiguities, we make a whole-process assumption that every channel occurs at most once across

all Ξ contexts in the typing proof for a Proc process. This is analogous to the whole-program

assumption that every variable is assigned to at most once in Comp.

There are two ways to produce a ?τ channel y, both of which model possible producer choices in

Comp. We model choosing to produce no output with the syntax y.send(), which sends an empty

message on y. To model choosing to produce one output, we use the syntax y.send(x), which sends

the channel x on y. The process that listens to y can then use x to get the input it needs to run.

To consume a ?τ channel x , one uses the process handle?x{ρ}. This process uses ρ to handle the

messages sent on x , unpacking their content before forwarding the messages on x to ρ. Note that
the producer of x will send either one or zero messages on x , so ρ will be run either once or not at

all, explicitly representing Comp’s producer choice of quantity.

Channels of type !τ are conceptually dual to ?τ channels. Whereas producers of ?τ send channels

to be received by handlers, consumers of !τ request channels from suppliers. The process x .req()

requests nothing from x , which models a Comp program choosing not to use its input. The

process x .req(y) requests a channel y from x , which models a Comp program choosing to use

its input. But there is a slight asymmetry: a Comp program can only choose to produce zero

or one outputs, but can choose to consume an input zero, one, or multiple times. Consequently,

x .req(!y1, !y2) requests two channels from x , and furthermore these channels must be able to process

additional requests so that a consumer can use an input as many times as it wants.

To produce a !τ channel y, one uses the process supply
!y{ρ}. This process repeatedly uses ρ

to supply for the requests made by the consumer of y. Such requests can effectively be made an

arbitrary number of times, explicitly representing Comp’s consumer choice of quantity.

6.1.2 Semantics. We formalize the behavior of Proc using the reduction rules in Figure 13. These

reduction rules were developed from cut elimination in classical linear logic. In fact, it is relatively

simple to show that this is equivalent to a fragment of the π -calculus model of linear logic developed

by Beffara [2006]. As a consequence, they enjoy the properties of progress, preservation, confluence,

and termination, as we prove in Appendix B. Thus, even though Proc is a highly parallel calculus,

every Proc process will compute to the same value no matter how it is reduced. Proc is designed

so that we can consider two processes semantically equivalent precisely when they reduce to

syntactically identical normal forms, modulo renaming of intermediate channels.

To assist the reader, our presentation of the reduction rules in Figure 13 consistently conform

to a few conventions. We continue to use x to refer to input channels, but now we use z to refer

to output channels. As for y, here we use it to refer to intermediate channels. Most rules have a

producer of y occurring in parallel with a consumer of y, and the reduction often then eliminates y
from the process altogether. Hence, y is the cutpoint of the reduction. Meanwhile, the reduced term

will always have the same input channels x and output channels z as the original, as is consistent
with the linear nature of the calculus. Lastly, although ∥ is commutative, for convenience we also

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:22 Andrew K. Hirsch and Ross Tate

Parallel

ρ1 → ρ ′
1

ρ1 ∥ ρ2 → ρ ′
1
∥ ρ2

Context

ρ → ρ ′

handle?x{ρ} → handle?x{ρ
′}

ρ → ρ ′

supply
!z{ρ} → supply

!z{ρ
′}

Identity

y ∈ consumed(ρ)

x ⇌ y ∥ ρ → ρ[y 7→ x]

y ∈ produced(ρ)

ρ ∥ y ⇌ z → ρ[y 7→ z]

Fail

ρx = {x .req() | x ∈ consumed(ρ) ∧ x , y}
ρz = {z.send() | z ∈ produced(ρ)}

y.send() ∥ handle?y{ρ} → ρx ∥ ρz

Succeed y.send(x) ∥ handle?y{ρ} → ρ[y 7→ x]

Drop supply
!y{ρ} ∥ y.req() → {x .req() | x ∈ consumed(ρ)}

Take supply
!y{ρ} ∥ y.req(z) → ρ[y 7→ z]

Clone

for each x ∈ consumed(ρ), the channels yx
1
and yx

2
are fresh

ρx =
{
x .req(!yx

1
, !yx

2
) | x ∈ consumed(ρ)

}
ρz1
= supply

!z1

{ρ[y 7→ z1, x 7→ yx
1
| x ∈ consumed(ρ)]}

ρz2
= supply

!z2

{ρ[y 7→ z2, x 7→ yx
2
| x ∈ consumed(ρ)]}

supply
!y{ρ} ∥ y.req(!z1, !z2) → ρx ∥ ρz1

∥ ρz2

D
i
s
t
r
i
b
u
t
e

y ∈ consumed(ρ2)

supply
!y{ρ1} ∥ supply

!z{ρ2} → supply
!z{supply

!y{ρ1} ∥ ρ2}

y ∈ consumed(ρ2)

supply
!y{ρ1} ∥ handle?x{ρ2} → handle?x{supply

!y{ρ1} ∥ ρ2}

y ∈ produced(ρ1)

handle?x{ρ1} ∥ handle?y{ρ2} → handle?x{ρ1 ∥ handle?y{ρ2}}

Fig. 13. Proc Reduction Rules

present producers of intermediate channels to the left of ∥, and consumers to the right, providing a

more familiar left-to-right reading of the processes.

The Parallel and Context rules together say that reduction can occur anywhere within the

process, provided there is an appropriate opportunity for reduction. Note that the Parallel rule

does not restrict reduction to only the left-hand side of ∥ because ∥ is syntactically commutative.

The Identity rules say that x ⇌ y is essentially the identity process. These rules refer to

the properties produced(ρ) and consumed(ρ), which are formalized in Appendix B. Informally, a

channel is produced by ρ if it is an input of ρ according to the type of ρ, and a channel is consumed
by ρ if it is an output of ρ according to the type of ρ. The identity rules check these properties in

order to ensure that the channel being substituted is internal to the system rather than an exposed

input or output of the system.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:23

The Fail rule defines what happens when a handler handle?y{ρ} is sent an empty message. This

indicates the handler is not needed. Consequently, ρ is eliminated from the process. Furthermore,

empty messages are dispatched (by ρx and ρz) on the other channels that ρ would have consumed

or produced. This lets the other users of those channels know that they will not be needed. Note that

we use comprehension notation to define ρx and ρz , taking advantage of the fact that ∥ operates
on multisets of processes.

The Succeed rule defines what happens when a handler handle?y{ρ} is sent a (single) channel x .
This indicates that the handler should be executed (once) using x as its input in place of y. As such,
this just reduces to ρ with its y input substituted with x .

The Drop and Take rules are dual to the Succeed and Fail rules, and they look very similar. The

only differences besides duality are due to the fact that handlers and suppliers can consume many

input channels but produce only one output channel, a restriction that simplifies our presentation

while still being sufficient for representing Comp.

TheClone rule defines what happenswhen a supplier is given a request for two reusable channels.

This reduction works by duplicating the supplier. However, the supplier may be consuming a variety

of channels. Consequently, requests must be dispatched (by ρx) to each of these channels so that

they are duplicated as well, with the two new suppliers (ρz1
and ρz2

) being connected to the

appropriate duplicates. Thus the Clone rule is the only reduction that introduces new intermediate

channels, although the original intermediate channel y is still eliminated.

Finally, the Distribute rules allow suppliers and handlers to be pulled into other suppliers and

handlers when communicating on appropriate channels of the contained process. This is important

because reduction can proceed inside suppliers and handlers. In particular, the Distribute rules are

necessary for proving that ! and ? satisfy the (co)monad laws, enabling them to formally represent

the consumer and producer effects of Comp. Consequently we can apply the layering techniques

from Section 5 to give Comp a categorical semantics using Proc.

6.2 Layering Effects
Now that we have constructed Proc and Comp, we want to show that the comonad and monad of

Proc actually capture the effects of Comp. To do that, we translate the structural rules of Comp into

the structural rules of Proc, which are only available when using ! and ?. Since Comp is analogous

to classical logic and Proc to linear logic, this is similar to the challenge of embedding classical

logic into linear logic. Indeed, as before, we cannot give a distributive law between ! and ?, so we

must instead use the layerings.

This time, however, we also have to consider terms and β reduction. In particular, we need to

show that we translate Comp programs to Proc processes with the same semantics. We give the

translations in Figures 14 and 15.

The translation in Figure 14 is the monad-prioritizing layering !Γ ⊢ ?!∆, derived from using the

Kleisli-like category KM
C,M . Note that it composes processes using handle?x{ρ}. Handle implements

bind for the ? monad in Proc. By using bind, this translation corresponds to the strict semantics of

Comp, always propagating errors forward through the process regardless of whether the values are

needed. For this reason, we also refer to this translation as the strict translation. To see this strict

behavior, consider the strict translation of our example Comp program x B 3; y B error; z B x :

supply
!x ′{x ′.init(3)} ∥ x .send(x ′) ∥ handle?x{y.send() ∥ handle?y{y.req() ∥ z.send(x)}}

This can reduce on either x or y. Since Proc is confluent (as proved in Appendix B), we can reduce

on either channel and get the same result. Choose x . The first thing this process does is reduce

x .send(x ′) and handle?x{ρ}, reducing to ρ[x 7→ x ′]. We then reduce on y, reducing y.send() and

handle?y{ρ} to x
′.req() and z.send(), thereby propagating the error. Then the supplier of x ′

receives

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:24 Andrew K. Hirsch and Ross Tate

⊢ x B c ⊣ x : N ;s ⊢ supply
!x ′{x ′.init(c)} ∥ x .send(x ′) ⊣ x : ?!N (where x ′

is fresh)

y : t ⊢ x B y ⊣ x : t ;s y : !t ⊢ x .send(y) ⊣ x : ?!t

⊢ x B error ⊣ x : t ;s ⊢ x .send() ⊣ x : ?!t

Γ ⊢ p1 ⊣ x : t1 ;s !Γ ⊢ ρ1 ⊣ x : ?!t1 Γ′,x : t1 ⊢ p2 ⊣ y : t2 ;s !Γ′,x : !t1 ⊢ ρ2 ⊣ y : ?!t2

Γ, Γ′ ⊢ p1; p2 ⊣ y : t2 ;s !Γ, !Γ′ ⊢ ρ1 ∥ handle?x{ρ2} ⊣ y : ?!t2

Γ ⊢ p ⊣ x : t1 ;s !Γ ⊢ ρ ⊣ x : ?!t1

Γ,y : t2 ⊢ p ⊣ x : t1 ;s !Γ,y : !t2 ⊢ y.req() ∥ ρ ⊣ x : ?!t1

Γ,x1 : t1,x2 : t1 ⊢ p ⊣ y : t2 ;s !Γ,x1 : !t1,x2 : !t1 ⊢ ρ ⊣ y : ?!t2

Γ,x : t1 ⊢ p ⊣ y : t2 ;s !Γ,x : !t1 ⊢ x .req(!x1, !x2) ∥ ρ ⊣ y : ?!t2

Fig. 14. Strict Translation

⊢ x B c ⊣ x : N ;ℓ ⊢ x ′.init(c) ∥ x ′.send(x) ⊣ x : ?N (where x ′
is fresh)

y : t ⊢ x B y ⊣ x : t ;ℓ y : !?t ⊢ y.req(x) ⊣ x : ?t

⊢ x B error ⊣ x : t ;ℓ ⊢ x .send() ⊣ x : ?t

Γ ⊢ p1 ⊣ x : t1 ;ℓ !?Γ ⊢ ρ1 ⊣ x : ?t1 Γ′,x : t1 ⊢ p2 ⊣ y : t2 ;ℓ !?Γ′,x : !?t1 ⊢ ρ2 ⊣ y : ?t2

Γ, Γ′ ⊢ p1; p2 ⊣ y : t2 ;ℓ !?Γ, !?Γ′ ⊢ supply
!x{ρ1} ∥ ρ2 ⊣ y : ?t2

Γ ⊢ p ⊣ x : t1 ;ℓ !?Γ ⊢ ρ ⊣ x : ?t1

Γ,y : t2 ⊢ p ⊣ x : t1 ;ℓ !?Γ,y : !?t2 ⊢ y.req() ∥ ρ ⊣ x : ?t1

Γ,x1 : t1,x2 : t1 ⊢ p ⊣ y : t2 ;ℓ !?Γ,x1 : !?t1,x2 : !?t1 ⊢ ρ ⊣ y : ?t2

Γ,x : t1 ⊢ p ⊣ y : t2 ;ℓ !?Γ,x : !?t1 ⊢ x .req(!x1, !x2) ∥ ρ ⊣ y : ?t2

Fig. 15. Lazy Translation

an empty message, which reduces to nothing, leaving just z.send(). This is what we would get if

we reduced the Comp program using the strict semantics and then translated the result to Proc.

The translation in Figure 15 corresponds to the comonad-prioritizing layering !?Γ ⊢ ?∆, derived
from using the Kleisli-like category KC

C,M . It composes processes using supply
!x{ρ}. Supply imple-

ments cobind for the ! comonad in Proc. For this reason, this translation corresponds to the lazy

semantics of Comp, always propagating whether values are needed before evaluating them.

With the lazy translation, our example Comp program x B 3; y B error; z B x becomes

supply
!x{x

′.init(3) ∥ x .send(x ′)} ∥ supply
!y{y.send()} ∥ y.req() ∥ x .req(z)

Since this can reduce on either x or y and either way will arrive at the same result, assume that y is

chosen. Then, the supplier of y receives an empty request, which reduces to nothing. Note that this

removes the only empty send in the process, thereby ignoring the error. Next, reducing on x results

in x ′.init(3) ∥ z.send(x ′), which is irreducible and is what we would get (modulo renaming x ′
) if

we reduced the Comp program using the lazy semantics and then translated the result to Proc.

The following theorem shows that choosing strictness versus laziness is always the same as

choosing to prioritize producer choice versus consumer choice. This generalizes to any strong

monad for a non-linear language, as explained in Appendix A. This means our comonad-prioritizing

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:25

layering defines a lazy semantics for every strong monad. Furthermore, whenever the strict and

lazy semantics for a strong monad differ, Theorem 6 proves that there cannot be a distributive law

of that monad over !.

Theorem 7 (Semantic Preservation). Suppose that a Comp program p translates strictly to a Proc
process ρ, meaning Γ ⊢ p ⊣ x : t ;s !Γ ⊢ ρ ⊣ x : ?!t , and a Comp program x B e translates strictly
to a Proc process ν , meaning Γ ⊢ x B e ⊣ x : t ;s !Γ ⊢ ν ⊣ x : ?!t . Then p reduces strictly to x B e ,
meaning p →∗

s x B e , if and only if ρ reduces to ν , meaning ρ →∗ ν . The theorem statement also
holds for laziness, meaning with ;ℓ in place of ;s and →∗

ℓ
in place of →∗

s .

Proof. First, we prove that if p strictly reduces to x B e , then ρ reduces to ν . Since Proc is
canonicalizing (as proved in Appendix B), we need only show that ρ can reduce to ν .

We can do this by induction on Γ ⊢ p ⊣ x : t . The only interesting case is

Γ1 ⊢ p1 ⊣ x : t ;s ρ1 Γ2,x : t ⊢ p2 ⊣ y : t ′ ;s ρ2

Γ1, Γ2 ⊢ p1; p2 ⊣ y : t ′ ;s ρ1 ∥ handle?x{ρ2}

By induction, if p1 reduces strictly to x B e1 and p2 reduces strictly to y B e2 then ρ1 →
∗ ν1 and

ρ2 →
∗ ν2. We then consider the cases of e1, here ignoring the drops of unused inputs for brevity.

If e1 is c , then p1; p2 will eventually strictly reduce to p2[x 7→ c]. On the Proc side, ν1 will be

x ′.init(c) ∥ x ′.send(x), which will match with the handler. This will cause ρ2 to run normally with

the variable x mapped to x ′
, which is initialized to the value c . This is the translation of p2[x 7→ c].

A similar argument holds if e1 is some variable z.
If e1 is error, then p1; p2 will eventually strictly reduce to an error. On the Proc side, ν1 will

be x .send(), which will match with the handler and altogether reduce to y.send(), because y is

necessarily produced by ρ2. This is the translation of y B error.
A similar proof holds for the lazy semantics except one considers the cases of e2 instead of e1.

Lastly, we prove the reverse direction of the if and only if: that if ρ reduces to ν , then p strictly

reduces to x B e , and similarly for the lazy semantics. Because strict Comp is canonicalizing,

p must reduce to x B e ′ for some e ′, and x B e ′ translates to some ν ′. Then, the first half of the
theorem implies that ρ reduces to ν ′. By the definition of translation of assignments, ν and ν ′ are
easily shown to be irreducible. Thus, ρ reduces to two irreducible processes, ν and ν ′, which must

then be equal since Proc is canonicalizing. This means x B e and x B e ′ translate to the same Proc

process, which is easily shown to imply that e = e ′. □

7 RELATEDWORK
This paper unifies several threads of work. We review those threads here, focusing on pieces of

work not only as individual entities, but also as entities that interact with each other.

7.1 Monads and Effects
Monads are the centerpoint of most of the research on effects. This began with Moggi’s [1989]

seminal paper on the work. He defined a monadic notion of computation, using strong monads to

extend the λ-calculus with operations such as throwing exceptions and reading and writing state.

At about the same time, Lucassen and Gifford [1988] were developing the first type-and-effect

system. Type-and-effect systems classify programs as having effects from some set, and give ways

of combining these effects. Lucassen and Gifford also provided an effect-inference algorithm,

analogous to a type-inference algorithm.

Wadler and Thiemann [2003] developed an indexed version of Moggi’s monadic semantics for

Lucassen and Gifford’s type-and-effect system, building a bridge between these areas. Since then,

significantly more research has been done in both monadic semantics [Atkey 2009; Filinski 1999;

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:26 Andrew K. Hirsch and Ross Tate

Hicks et al. 2014; Hyland et al. 2006; Lüth and Ghani 2002; Peyton Jones and Wadler 1993] and

type-and-effect systems [Marino and Millstein 2009; Nielson 1996; Nielson and Nielson 1999]. Many

of these later developments required generalizations of the previous work. Tate [2013] unified

these generalizations with a formalization of producer effects and a semantics for producer effect

systems, which he proved to be as general as possible.

7.2 Comonads
Comonads and consumer effects, or “coeffects,” have not been as thoroughly studied as monads

and producer effects. The first use of comonads in computer science comes from Brookes and

Geva [1992]. They gave a denotational account of how computations use inputs. In particular,

their semantics showed how different computations with different evaluation orders might have

different meanings. They discovered that by giving semantics in domain theory with comonadic

computations, one can distinguish between amounts of computation done on different inputs.

Several years later, Uustalu and Vene [2008] identified many more applications of comonads, and

showed them to be difficult to express monadically. A particularly interesting example was their

use of comonadic computation to give meaning to dataflow languages [Uustalu and Vene 2005].

Uustalu and Vene’s work considered a single comonad at a time, whereas Petricek, Orchard, and

Mycroft [2013, 2014] identified a way to index comonads. Brunel, Gaboardi, Mazza, and Zdancewic

[2014] then adapted Petricek et al.’s work to comonads with weakening and contraction.

7.3 Combining Monads and Comonads
We are not the first to discover the Kleisli-like constructions in Section 5, although we did strengthen

their connection to effects. Brookes and Geva [1992] had discovered three comonads similar to ! for

domain theory. Brookes and van Stone [1993] later investigated how to combine these comonads

with various monads in a general fashion in order to connect with Moggi’s monadic notions of

computation. In doing so, they developed the constructions of Section 5. However, they focused

on distributive laws because they did not identify the equivalence in Theorem 6 that implies that

distributive laws cannot be used for the application they were striving for. On the other hand, Power

and Watanabe [2002] developed a 2-categorical treatment of the constructions, even identifying

the equivalence in Theorem 6. However, Power and Watanabe did not identify applications to any

particular monad and comonad without a distributive law. Therefore, we are the first to recognize

that there are important applications in the theory of effects where a distributive law cannot exist,

such as strictness versus laziness.

We are the first we are aware of to formalize a notion of doubly-effectful languages. This means

that we are the first to prove that the semantics using distributive laws is complete as well as

sound for the subsumption laws we presented for Kσ
C,M . We are also the first to note that in some

doubly-effectful languages, producer-effectful programs or consumer-effectful programs may not

be able to embed into the doubly-effectful language.

More recently, Gaboardi, Katsumata, Orchard, Breuvart, and Uustalu [2016] have extended the

theory of distributive laws to cover graded monads and comonads. As an example, they apply this

to show that information flow commutes with non-determinism. That is, they prove that following

a non-deterministic program with a program whose access to confidential data is limited does not

unintentionally leak more data to that program.

7.4 Strictness and Laziness
The divide between strict and lazy evaluation strategies has long been a point of interest [Ariola et al.

1995; Levy 1999, 2001; Maraist et al. 1995; Plotkin 1975; Sabry and Wadler 1996; Zeilberger 2009],

even since the beginning of computer science [Church and Rosser 1936]. Plotkin [1975] described

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:27

the two main ways of providing languages with strict and lazy evaluation orders: call-by-value and

call-by-name. Decades later, this led to a series of papers that gave several evaluation strategies

with varying properties [Ariola et al. 1995; Levy 1999, 2001; Maraist et al. 1995; Sabry and Wadler

1996; Zeilberger 2009].

One of these, by Maraist, Odersky, Turner, and Wadler [1995], used intutionistic linear type
theory, which among other things does not have the ? exponential, to give semantics to strictness

and laziness. More specifically, they in a sense give semantics to different evaluation strategies

via the linear λ-calculus invented by Wadler [1990]. They are interested in intensional properties

of these translations, such as whether various terms are syntactically identical, whereas we are

interested in extensional properties, such as whether various terms interact similarly. Thus, they

focus on where to place supply
!x{−} to force or delay evaluation, whereas we focus on how to

compose programs so that they exhibit specific interactions.

7.5 Logic
The exponentials of linear logic are the basis of our motivation for layering. Linear logic was

developed by Girard [1987] to give a logic of resources. However, it has been described as “a

proof-theorist’s logic,” since it is often understood as calling out the structural rules of Gentzen’s

original sequent-calculus formulation of classical logic [Gentzen 1934, 1935].

Linear logic retains Gentzen’s cut-elimination theorem, which tells us that the proofs-as-programs

construction for classical linear logic is normalizing [Girard 1987]. In classical logic, there are

multiple ways to reduce a cut, but in linear logic there is only one. As a consequence, the proofs-

as-programs construction for classical linear logic is also confluent (modulo exchange), which

altogether makes it canonicalizing [Bellin and Scott 1994].

These deep connections between classical logic and classical linear logic led to attempts to

embed classical logic into classical linear logic. Girard [1987] was able to embed intuitionistic logic
into linear logic by prepending every formula on the left of a turnstile with a !. However, he was

only able to give an embedding for cut-free proofs of classical logic into classcal linear logic by

prepending every formula on the left of a turnstile with a ! and every formula on the right of

the turnstile with a ?. Later, Girard [1991] used the concept of polarization to give a semantics to

classical logic through correlation domains. Correlation domains are a semantic object that Girard

used to develop and give meaning to classical linear logic.

However, Girard never gave a syntactic translation from classical logic to classical linear logic,

though Schellinx [1994] was able to do so in his thesis. He explored several ways of embedding

classical-logic proofs into classical linear logic by prepending formulae with exponents, a pattern

he called linear decorating. In particular, he then showed two compositional embeddings, which

correspond to the two layerings presented in this paper. However, he did not generalize beyond

linear logic itself to other monads and comonads or to other languages.

Schellinx noted that his embeddings of classical logic into linear logic were constructivizations.

He even connected this to the proofs-as-programs principle. However, he did not explore the

operational point of view of his embeddings. We have illustrated here using effects that they

correspond to strict and a lazy notions of classical reasoning, but others have also illustrated this

correspondence by instead using polarization and focusing.

7.6 Polarization and Focusing
Other works connect the proof theory of classical logic with strictness and laziness through linear

logic. For instance, Danos, Joinet, and Schellinx [1997] develop two new logics, LKT and LKQ,

each of which restricts classical logic such that cut elimination is confluent. LKT and LKQ can be

viewed through the lens of polarization, which was developed by Girard to constructivize classical

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:28 Andrew K. Hirsch and Ross Tate

logic [Girard 1991]. Polarization associates each basic proposition and connective with a positive

or negative polarity, and recursively associates each formula with a polarity. Viewed through

this lens, LKT corresponds to classical logic with an always-negative interpretation, while LKQ

corresponds to classical logic with an always-positive interpretation. They connected LKT and

LKQ to Schellinx’s 1994 linear decorating, showing that LKT can be translated into linear logic

using a comonad-prioritizing layering, and that LKQ can be translated into linear logic using a

monad-prioritizing layering.

An important theorem of Danos et al. is that Parigot’s logic, Free Deduction [Parigot 1992a],

embeds into a unifying logic, LK
tq
. This allowed them to embed Parigot’s λµ-calculus [Parigot

1992b] into LKT. Parigot developed λµ-calculus by restricting Free Deduction such that η-equalities
are respected in cut elimination. Essentially, λµ-calculus gives a method of writing programs with

multiple outputs without using parallelism. Instead, it uses names to essentially choose an output

to focus on in the program, with mechanisms for switching between named outputs. This gives

a computational model of classical logic via a proofs-as-programs correspondence with classical

natural deduction.

Our work stands that of Danos et al. on its head. Instead of developing the layerings via polariza-

tion, we directly use the layerings. The layerings force a positive or negative interpretation because

of the polarization properties of the linear exponentials. However, by putting the layerings first,

we are able to connect to the work on effects through monadic and comonadic semantics.

While Danos et al. did not discuss strictness and laziness, several follow-up pieces of work did.

In particular, the λµ-calculus of Parigot [1992b], the ¯λµµ̃-calculus of Curien and Herbelin [2000],

and the CPS translations of Zeilberger [2009] use polarization to discuss strictness and laziness

through Andreoli’s 1992 work on focusing. Categorical models for λµ-calculus and ¯λµµ̃-calculus
were explored by Curien, Fiore, and Munch-Maccagnoni [2016]. Interestingly, models for the

Effect Calculus of Egger, Møgelberg, and Simpson [2014] and the Call-By-Push-Value model of

computation of Levy [2001] are subsumed by Curien et al.’s models of
¯λµµ̃-calculus, which connects

that calculus to effects. However, Curien et al. mention that they struggle to develop a calculus

with exceptions and handlers that matches their semantics.

8 CONCLUSION
In this paper, we gave an example pair of effects to which the currently-preferred semantic technique

cannot be applied. This technique requires a distributive law, but no distributive law exists between

the monad and comonad representing the example effects. If such a distributive law did exist,

because our effects are intimately connected with strictness and laziness, we show that this would

imply that strict and lazy semantics do not differ.

In exploring this, we touched upon logic. Our results in this paper allow us to read classical

logic as a logic with effects, and classical linear logic as giving semantics to those effects. Indeed,

the layering semantics for effects corresponds to preestablished embeddings of classical logic into

classical linear logic.

Thus, by combining the perspectives of effects, logic, and semantics, we are able to get new

insights into each of these areas. In particular, we found a compositional or categorical interpretation

of strictness and laziness that still corresponds to traditional rewrite systems but also bridges to

effects and to cut elimination.

ACKNOWLEDGEMENTS
We thank Stephen Brookes, Marco Gaboardi, Guillaume Munch-Maccagnoni, Cornell’s Program-

ming Languages Discussion Group, and the anonymous reviewers for their many valuable contri-

butions to this paper.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:29

REFERENCES
Samson Abramsky. 1994. Proofs as Processes. Theoretical Computer Science 135, 1 (1994), 5–9.
Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2

(1992), 297–347.

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. 1995. A Call-By-Need Lambda Calculus.

In POPL. ACM, New York, NY, USA, 233–246.

Robert Atkey. 2009. Parameterised Notions of Computation. Journal of Functional Programming 19, 3-4 (2009), 335–376.

Emmanuel Beffara. 2006. A Concurrent Model for Linear Logic. ENTCS 155 (2006), 147–168.
G. Bellin and P. J. Scott. 1994. On the π -Calculus and Linear Logic. Theoretical Computer Science 135, 1 (1994), 11–65.
Jean Bénabou. 1963. Catégories avec Multiplication. Comptes Rendus de l’Académie des Sciences Paris 258 (1963), 771–774.
R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. 1996. ! and ?: Storage as Tensorial Strength. Mathematical Structures in

Computer Science 6, 4 (1996), 313–âĂŞ351.
Stephen Brookes and Shai Geva. 1992. Computational Comonads and Intensional Semantics. In Applications of Categories in

Computer Science. Cambridge University Press, Cambridge, UK, 1–44.

Stephen Brookes and Kathryn van Stone. 1993. Monads and Comonads in Intensional Semantics. Technical Report CMU-CS-

93-140. Carnegie Mellon University Department of Computer Science.

Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A Core Quantitative Coeffect Calculus. In

Programming Languages and Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 351–370.

Alonzo Church and J. B. Rosser. 1936. Some Properties of Conversion. Trans. Amer. Math. Soc. 39, 3 (1936), 472–482.
Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A Theory of Effects and Resources: Adjunction

Models and Polarised Calculi. In POPL. ACM, New York, NY, USA, 44–56.

Pierre-Louis Curien and Hugo Herbelin. 2000. The Duality of Computation. In ICFP. ACM, New York, NY, USA, 233–243.

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. 1997. A New Deconstructive Logic: Linear Logic. The Journal of
Symbol Logic 62, 3 (1997), 755–807.

Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2012. Cut Reduction in Linear Logic as Asynchronous

Session-Typed Communication. In CSL, Vol. 16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

228–242.

Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. 2014. The Enriched Effect Calculus: Syntax and Semantics. Journal
of Logic and Computation 24, 3 (2014), 615–654.

Andrzej Filinski. 1999. Representing Layered Monads. In POPL. ACM, New York, NY, USA, 175–188.

Andrzej Filinski. 2010. Monads in Action. In POPL. ACM, New York, NY, USA, 483–494.

Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo Uustalu. 2016. Combining Effects and

Coeffects via Grading. In ICFP. ACM, New York, NY, USA, 476–489.

Gerhard Gentzen. 1934. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift 39 (1934), 176–210.
Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift 39 (1935), 405–431.
Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50, 1 (1987), 1–101.
Jean-Yves Girard. 1991. A New Constructive Logic: Classical Logic. Research Report RR-1443. INRIA.

Michael Hicks, Gavin Bierman, Nataliya Guts, Daan Leijen, and Nikhil Swamy. 2014. Polymonadic Programming. EPTCS
153 (2014), 79–99.

Martin Hyland, Gordon Plotkin, and John Power. 2006. Combining Effects: Sum and Tensor. Theoretical Computer Science
357, 1 (2006), 70–99.

Mark P. Jones and Paul Hudak. 1993. Implicit and Explict Parallel Programming in Haskell. Technical Report

YALEU/DCS/RR982. Yale University, New Haven, Connecticut, USA.

Joachim Lambek. 1969. Deductive Systems and Categories II. Standard Constructions and Closed Categories. In Category
Theory, Homology Theory and Their Applications I. Springer Berlin Heidelberg, Berlin, Heidelberg, 76–122.

Tom Leinster. 1998. General Operads and Multicategories. (1998).

Paul Blain Levy. 1999. Call-By-Push-Value: A Subsuming Paradigm. In Typed Lambda Calculus and Applications. Springer
Berlin Heidelberg, Berlin, Heidelberg, 228–243.

Paul Blain Levy. 2001. Call-By-Push-Value. Ph.D. Dissertation. Queen Mary and Westfield College University of London,

London, UK.

Francisco J. López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. 2007. A Simple Rewrite Notion for

Call-time Choice Semantics. In PPDP. ACM, New York, NY, USA, 197–208.

John M. Lucassen and David K. Gifford. 1988. Polymorphic Effect Systems. In POPL. ACM, New York, NY, USA, 47–57.

Christoph Lüth and Neil Ghani. 2002. Composing Monads using Coproducts. In ICFP. ACM, New York, NY, USA, 133–144.

Saunders Mac Lane. 1963. Natural Associativiy and Commutativity. Rice University Studies 49, 4 (1963), 28–46.
John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. 1995. Call-by-Name, Call-by-Value, Call-by-Need, and

the Linear Lambda Calculus. ENTCS 1 (1995), 370–392.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

http://doi.org/10.1016/0304-3975(94)00103-0
http://doi.org/10.1093/logcom/2.3.297
http://doi.org/10.1145/199448.199507
http://doi.org/10.1017/S095679680900728X
http://doi.org/10.1016/j.entcs.2005.11.055
http://doi.org/10.1016/0304-3975(94)00104-9
http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image
http://doi.org/10.1017/S0960129500001055
http://doi.org/10.1017/CBO9780511525902.003
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/brookes/www/papers/MonadsComonads.pdf
http://doi.org/10.1007/978-3-642-54833-8_19
http://doi.org/10.2307/1989762
http://doi.org/10.1145/2837614.2837652
http://doi.org/10.1145/2837614.2837652
http://doi.org/10.1145/351240.351262
http://doi.org/10.2307/2275572
http://doi.org/10.4230/LIPIcs.CSL.2012.228
http://doi.org/10.4230/LIPIcs.CSL.2012.228
http://doi.org/10.1093/logcom/exs025
http://doi.org/10.1145/292540.292557
http://doi.org/10.1145/1706299.1706354
http://doi.org/10.1145/2951913.2951939
http://doi.org/10.1145/2951913.2951939
http://doi.org/10.1007/BF01201353
http://doi.org/10.1007/BF01201353
http://doi.org/10.1016/0304-3975(87)90045-4
https://hal.inria.fr/inria-00075117/
http://doi.org/10.4204/EPTCS.153.7
http://doi.org/10.1016/j.tcs.2006.03.013
https://cpsc.yale.edu/sites/default/files/files/tr982.pdf
http://doi.org/10.1007/BFb0079385
https://arxiv.org/abs/math/9810053
http://doi.org/10.1007/3-540-48959-2_17
https://qmro.qmul.ac.uk/jspui/handle/123456789/4742
http://doi.org/10.1145/1273920.1273947
http://doi.org/10.1145/1273920.1273947
http://doi.org/10.1145/73560.73564
http://doi.org/10.1145/581478.581492
http://hdl.handle.net/1911/62865
http://doi.org/10.1016/S1571-0661(04)00022-2
http://doi.org/10.1016/S1571-0661(04)00022-2

88:30 Andrew K. Hirsch and Ross Tate

Daniel Marino and Todd Millstein. 2009. A Generic Type-and-Effect System. In TLDI. ACM, New York, NY, USA, 39–50.

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I. Information and Computation
100, 1 (1992), 1–40.

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In LICS. IEEE, Piscataway Township, NJ, USA, 14–23.

Flemming Nielson. 1996. Annotated Type and Effect Systems. Comput. Surveys 28, 2 (1996), 344–345.
Flemming Nielson and Hanne Riis Nielson. 1999. Type and Effect Systems. In Correct System Design: Recent Insights and

Advances. Springer Berlin Heidelberg, Berlin, Heidelberg, 114–136.

Michel Parigot. 1992a. Free Deduction: An Analysis of “Computations” in Classical Logic. In Logic Programming. Springer
Berlin Heidelberg, Berlin, Heidelberg, 361–380.

Michel Parigot. 1992b. λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In Logic Programming
and Automated Reasoning. Springer Berlin Heidelberg, Berlin, Heidelberg, 190–201.

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2013. Coeffects: Unified Static Analysis of Context-Dependence. In

ICALP. Springer-Verlag, Berlin, Heidelberg, 385–397.
Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: A Calculus of Context-Dependent Computation. In

ICFP. ACM, New York, NY, USA, 123–135.

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative Functional Programming. In POPL. ACM, New York, NY, USA,

71–84.

G. D. Plotkin. 1975. Call-By-Name, Call-By-Value, and the λ-Calculus. Theoretical Computer Science 1, 2 (1975), 125–159.
John Power and Hiroshi Watanabe. 2002. Combining a Monad and a Comonad. Theoretical Computer Science 280, 1 (2002),

137–162.

Amr Sabry and Philip Wadler. 1996. A Reflection on Call-by-Value. In ICFP. ACM, New York, NY, USA, 13–24.

Harold Schellinx. 1994. The Noble Art of Linear Decorating. Ph.D. Dissertation. Unerversiteit van Amsterdam, Amsterdam,

Netherlands.

M. E. Szabo. 1975. Polycategories. Communications in Algebra 3, 8 (1975), 663–689.
Ross Tate. 2013. The Sequential Semantics of Producer Effect Systems. In POPL. ACM, New York, NY, USA, 15–26.

Tarmu Uustalu and Varmo Vene. 2005. Signals and Comonads. Journal of Universal Computer Science 11, 7 (2005), 1310–1326.
Tarmo Uustalu and Varmo Vene. 2008. Comonadic Notions of Computation. ENTCS 203, 5 (2008), 263–284.
PhilipWadler. 1990. Linear Types Can Change theWorld!. In Programming Concepts andMethods. North-Holland, Amsterdam,

Netherlands, 1–21.

Philip Wadler. 2003. Call-by-Value is Dual to Call-by-Name. In ICFP. ACM, New York, NY, USA, 189–201.

Philip Wadler. 2012. Propositions as Sessions. In ICFP. ACM, New York, NY, USA, 273–286.

Philip Wadler and Peter Thiemann. 2003. The Marriage of Effects and Monads. Transactions on Computational Logic 4, 1
(2003), 1–32.

Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching. Ph.D. Dissertation. Carnegie Mellon

University, Pittsburgh, Pennsylvania, USA.

A LANGUAGES WITH MULTIPLE INPUTS AND MULTIPLE OUTPUTS
Experts may be interested in the categorical properties that ! and ? exhibit that enable the layerings

in Sections 5.2.4 and 5.2.5 to generalize to languages with multiple inputs and multiple outputs. As

is already known, the properties of being a monad and a comonad are not sufficient [Jones and

Hudak 1993; Moggi 1989; Uustalu and Vene 2008]. The rest of this section addresses these experts.

As such, we will not define all of the terms in this section, instead relying on the expertise of the

reader.

First, for multiple inputs, consider the already well-established notion of strength for monads.

Strength enables a monadM to generalize to multiple inputs via the following rule:

Γ,τ1 ⊢ Mτ2

Γ,Mτ1 ⊢ Mτ2

However, to generalize the layerings of M with a comonad C we only need the monad to admit

that rule restricted to C:

CΓ,τ1 ⊢ Mτ2

CΓ,Mτ1 ⊢ Mτ2

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

http://doi.org/10.1145/1481861.1481868
http://doi.org/10.1016/0890-5401(92)90008-4
http://doi.org/10.1109/LICS.1989.39155
http://doi.org/10.1145/234528.234745
http://doi.org/10.1007/3-540-48092-7_6
http://doi.org/10.1007/3-540-55460-2_27
http://doi.org/10.1007/BFb0013061
http://doi.org/10.1007/978-3-642-39212-2_35
http://doi.org/10.1145/2628136.2628160
http://doi.org/10.1145/158511.158524
http://doi.org/10.1016/0304-3975(75)90017-1
http://doi.org/10.1016/S0304-3975(01)00024-X
http://doi.org/10.1145/232627.232631
http://hdl.handle.net/11245/1.104138
http://doi.org/10.1080/00927877508822067
http://doi.org/10.1145/2429069.2429074
http://doi.org/10.3217/jucs-011-07-1311
http://doi.org/10.1016/j.entcs.2008.05.029
http://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.ps
http://doi.org/10.1145/944705.944723
http://doi.org/10.1145/2364527.2364568
http://doi.org/10.1145/601775.601776
http://reports-archive.adm.cs.cmu.edu/anon/2009/CMU-CS-09-122.pdf

Strict and Lazy Semantics for Effects 88:31

This can be achievedwith by requiringM to be strong relative toC [Blute et al. 1996]. This weakening

of strength is important because ? is not strong, but it is strong relative to !. In traditional categorical

terms, strength relative toC is a natural transformation of typeMτ1 ⊗Cτ2 → M(τ1 ⊗Cτ2) satisfying

adaptations of the traditional strength laws, as detailed by Blute et al.. Note that traditional strength

from a non-linear setting translates to strength relative to ! in a linear setting. Thus, any traditional

strong monad can be layered with !, even in multi-input languages, to develop a strict and lazy

semantics for the effect represented by that monad.

As for the comonad C , being comonadic only allows cobind to apply when there is a single

input. In order to admit the multiple-input rule

CΓ ⊢ τ

CΓ ⊢ Cτ

C must furthermore be lax monoidal with respect to ⊗, and it must satisfy the laws for a (symmetric)

lax monoidal comonad [Uustalu and Vene 2008]. These two properties are sufficient for generalizing

our layerings to languages with multiple inputs and a single output.

Second, for multiple outputs,M andC must satisfy properties dual to those above. In other words,

C must admit the rule

Cτ1 ⊢ τ2,M∆

Cτ1 ⊢ Cτ2,M∆

This can be achieved by requiringC to be costrong relative toM [Blute et al. 1996]. In traditional cate-

gorical terms, costrength relative toM is a natural transformation of typeC(τ1 `Mτ2) → Cτ1 `Mτ2

satisfying adaptations of the traditional costrength laws, as detailed by Blute et al.. Furthermore, in

order for the monadM to admit the multiple-output rule

τ ⊢ M∆

Mτ ⊢ M∆

M must be colax monoidal with respect to `, and it must satisfy the laws for a (symmetric) colax

monoidal monad. These properties are sufficient for generalizing our layerings to languages with

multiple inputs and/or multiple outputs.

B METATHEORY FOR PROC
Here we prove the properties of Proc that make it a well-behaved semantic domain.

B.1 Preservation
Preservation is a straightforward proof by case. The only interesting part of the proof is showing

that consumed and produced can be defined syntactically, as shown in Figure 16. These definitions

can be shown to have the property that Γ ⊢ ρ ⊣ ∆ implies consumed(ρ) is precisely the set of

channels in Γ, and likewise produced(ρ) is precisely the set of channels in ∆. Note that this in turn

means type preservation also guarantees consumed and produced are preserved by reduction.

B.2 Progress
In order to prove progress for Comp, we first have to specify the values of Proc. A value in Proc is

intuitively a process in which every subcomponent is waiting, directly or indirectly, for messages

from the “open” input and output channels of the process. We formalize this in Figure 17. The

judgement ρ ⊢ x ≺ y says that no reduction can occur with channel y as the cutpoint until a

reduction occurs with channel x as the cutpoint. The one exception is reductions involving x ⇌ y,
which we address using a separate connected analysis.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:32 Andrew K. Hirsch and Ross Tate

ρ consumed(ρ) produced(ρ)
∅ {} {}

ρ1 ∥ ρ2

(⋃ consumed(ρ1)

consumed(ρ2)

)
\ closed(ρ1, ρ2)

(⋃ produced(ρ1)

produced(ρ2)

)
\ closed(ρ1, ρ2)

y.init(c) {} {y}
x ⇌ y {x} {y}
y.send() {} {y}
y.send(x) {x} {y}

handle?x{ρ} consumed(ρ) produced(ρ)
x .req() {x} {}

x .req(y) {x} {y}
x .req(!y1, !y2) {x} {y1,y2}

supply
!y{ρ} consumed(ρ) produced(ρ)

opened(ρ) = consumed(ρ) ∪ produced(ρ)
closed(ρ1, ρ2) = opened(ρ1) ∩ opened(ρ2)

Fig. 16. Syntactic Definition of consumed, produced, opened, and closed

ρ mentioned(ρ) connected(ρ)
∅ {} {}

ρ1 ∥ ρ2 mentioned(ρ1) ∪mentioned(ρ2) connected(ρ1) ∪ connected(ρ2)

y.init(c) {y} {}

x ⇌ y {x ,y} {x ,y}
y.send() {y} {}

y.send(x) {x ,y} {}

handle?x{ρ} mentioned(ρ) connected(ρ) \ opened(ρ)
x .req() {x} {}

x .req(y) {x ,y} {}

x .req(!y1, !y2) {x ,y1,y2} {}

supply
!y{ρ} mentioned(ρ) connected(ρ) \ opened(ρ)

ρ1 ⊢ x ≺ y

ρ1 ∥ ρ2 ⊢ x ≺ y

y.send(x) ⊢ y ≺ x

ρ ⊢ y ≺ z z < opened(ρ)

handle?x{ρ} ⊢ y ≺ z

x .req(y) ⊢ x ≺ y x .req(!y1, !y2) ⊢ x ≺ y1 x .req(!y1, !y2) ⊢ x ≺ y2

ρ ⊢ x ≺ z z < opened(ρ)

supply
!y{ρ} ⊢ x ≺ z

ρ ⊢ x ⪯ x

ρ ⊢ x ≺ y

ρ ⊢ x ⪯ y

ρ ⊢ x ⪯ y ρ ⊢ y ⪯ z

ρ ⊢ x ⪯ z

A Proc value is a process ρ satisfying

∀y ∈ mentioned(ρ). ∃x ∈ opened(ρ). ρ ⊢ x ⪯ y

and

connected(ρ) ⊆ opened(ρ)

Fig. 17. Formalization of Proc Values

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:33

Channels x ,y, z, . . .
Constants c ::= 0 | 1 | . . .
Processes ρ ::= ∅

| ρ1 ∥ ρ2

| y.init(c)
| x ⇌ y
| y.send(x)
| y.send()

| handle?x{ρ}
| x .req()

| x .req(y)
| x .req(!y1, !y2)

| supply
!cy{ρ} (c ≥ 1)

Types τ ::= N | !cτ | ?τ (c ≥ 1)

Contexts Γ,∆,Ξ ::= x : τ , . . .
(no repeats)

(unordered)

⊢ N ≤ N

c ≥ c ′ ⊢ τ ≤ τ ′

⊢ !cτ ≤ !c ′τ
′

⊢ τ ≤ τ ′

⊢ ?τ ≤ ?τ ′

⊢ τ ≤ τ ′ . . .

⊢ x : τ , . . . ≤ x : τ ′, . . .

⊢ ∅ ⊣

Γ ⊢ ρ1 ⊣ ∆,Ξ Γ′,Ξ ⊢ ρ2 ⊣ ∆′

Γ, Γ′ ⊢ ρ1 ∥ ρ2 ⊣ ∆,∆′

⊢ y.init(c) ⊣ y : N

x : τ ⊢ x ⇌ y ⊣ y : τ

x : τ ⊢ y.send(x) ⊣ y : ?τ

⊢ y.send() ⊣ y : ?τ

!Γ,x : τ1 ⊢ ρ ⊣ y : ?τ2

!Γ,x : ?τ1 ⊢ handle?x{ρ} ⊣ y : ?τ2

x : !1τ ⊢ x .req() ⊣

x : !1τ ⊢ x .req(y) ⊣ y : τ

x : !2cτ ⊢ x .req(!y1, !y2) ⊣ y1 : !cτ ,y2 : !cτ

x1 : !c1
τ1, . . . ⊢ ρ ⊣ y : τ

x1 : !c1cτ1, . . . ⊢ supply
!cy{ρ} ⊣ y : !cτ

⊢ Γ ≤ Γ′ Γ′ ⊢ ρ ⊣ ∆′ ⊢ ∆′ ≤ ∆

Γ ⊢ ρ ⊣ ∆

Fig. 18. The Syntax and Type System of Procn

A value is then a process in which every channel occurring in the process is necessarily waiting

on some open channel of the process, and every connected channel occurring in the process is

itself some open channel of the process. To see that this truly captures the concept of value one

would expect, consider two cases. First, suppose a value has no inputs or outputs. Then there are

necessarily no channels mentioned in the value, so the value must be ∅. Second, suppose a value

has only one output x of type N. Notice that no case of ρ ⊢ x ≺ y can apply to a channel x with

type N. Consequently, x is the only channel that can be mentioned, and the only processes doing

so with the right type for x are of the form x .init(c).
Furthermore, every value is irreducible. To prove this, consider the reduction rules. In each case,

one can easily prove that the cutpoint channel y is either connected or minimal with respect to ≺,

by which we mean there is no variable x such that ρ ⊢ x ≺ y. Consequently, a reducible process
necessarily has an intermediate channel that is either connected or does not depend on an open

channel of the process.

Finally, to prove progress, one can do induction on the proof that ρ is well-typed to prove that ≺ is

well-founded. The key induction invariant for this proof is that Γ ⊢ ρ ⊣ ∆ implies that, for all

channels x and y in ∆, if ρ ⊢ x ⪯ y holds then x and y are the same channel. In combination with

well-foundedness of ≺, this means there are no dependency chains between the output channels of

a process. Well-foundedness is important because it implies that if ρ has any intermediate variables

with no dependency on an open variable, then at least one of those intermediate variables, say y, is
minimal with respect to ≺. Because y is intermediate, it must occur in some Ξ context in the proof

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

88:34 Andrew K. Hirsch and Ross Tate

Parallel

ρ1 → ρ ′
1

ρ1 ∥ ρ2 → ρ ′
1
∥ ρ2

Context

ρ → ρ ′

handle?x{ρ} → handle?x{ρ
′}

ρ1 → ρ2

supply
!cz{ρ1} → supply

!cz{ρ2}

Identity

y ∈ consumed(ρ)

x ⇌ y ∥ ρ → ρ[y 7→ x]

y ∈ produced(ρ)

ρ ∥ y ⇌ z → ρ[y 7→ z]

Fail

ρx = {x .req() | x ∈ consumed(ρ) ∧ x , y}
ρz = {z.send() | z ∈ produced(ρ)}

y.send() ∥ handle?y{ρ} → ρx ∥ ρz

Succeed y.send(x) ∥ handle?y{ρ} → ρ[y 7→ x]

Drop supply
!cy{ρ} ∥ y.req() → {x .req() | x ∈ consumed(ρ)}

Take supply
!cy{ρ} ∥ y.req(z) → ρ[y 7→ z]

Clone

for each x ∈ consumed(ρ), the channels yx
1
and yx

2
are fresh

ρx =
{
x .req(!yx

1
, !yx

2
) | x ∈ consumed(ρ)

}
ρz1
= supply

!⌊c/2⌋z1

{ρ[y 7→ z1, x 7→ yx
1
| x ∈ consumed(ρ)]}

ρz2
= supply

!⌊c/2⌋z2

{ρ[y 7→ z2, x 7→ yx
2
| x ∈ consumed(ρ)]}

supply
!cy{ρ} ∥ y.req(!z1, !z2) → ρx ∥ ρz1

∥ ρz2

D
i
s
t
r
i
b
u
t
e

y ∈ consumed(ρ2)

supply
!c

1
y{ρ1} ∥ supply

!c
2
z{ρ2} → supply

!c
2
z{supply

!⌊c1/c2
⌋y{ρ1} ∥ ρ2}

y ∈ consumed(ρ2)

supply
!cy{ρ1} ∥ handle?x{ρ2} → handle?x{supply

!cy{ρ1} ∥ ρ2}

y ∈ produced(ρ1)

handle?x{ρ1} ∥ handle?y{ρ2} → handle?x{ρ1 ∥ handle?y{ρ2}}

Fig. 19. Annotated Procn Reduction Rules

that ρ is well-typed. Consequently, one can easily find a non-∥ process ρp producing y in parallel

with a non-∥ process ρc consuming y. Enumerating through all the possible cases where ρp and ρc
can have the same type for y and y is minimal with respect to ≺, one can easily see that each case

has a corresponding reduction rule that applies, guaranteeing progress.

B.3 Termination
To show that Proc is terminating, we develop a decreasing well-founded measure. However, in

order to build this measure, we actually use a modified version of Proc. This version keeps track of

how many times a !τ channel might be used. This language, which we call Procn , has the syntax

and type system presented in Figure 18. The only change is that !s and supplies are annotated with

a number capping how many times they can be used.

Given a Proc process ρ, one can construct a Procn process ρn that erases to ρ, meaning dropping

its annotations results in ρ. The typing rules are presented to show how annotations can be

inferred proceeding from right to left through the typing proof (computing the maximum of given

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

Strict and Lazy Semantics for Effects 88:35

annotations where necessary). One can simply initialize every ! in the output types of ρ with 1 and

then apply this inference process to get a suitable Procn process ρn .
Now suppose the Proc process ρ reduces in a single step to ρ ′. Then one can easily show that,

because ρn is well-typed, ρn can also reduce (using the annotated reduction rules in Figure 19) to a

Procn process ρ ′n that erases to ρ ′. Since, with a bit of arithmetic, the annotated reduction rules

can also be shown to be type-preserving, ρ ′n will also be well-typed. Repeating this process, one

can show that every sequence of reduction steps in well-typed Proc processes has a corresponding

sequence of reduction steps in well-typed Procn processes. Thus, if every such sequence in Procn
is guaranteed to terminate, then Proc is necessarily terminating as well.

ρ |ρ |1 |ρ |2
∅ 0 1

ρ1 ∥ ρ2 |ρ1 |1 + |ρ2 |1 |ρ1 |2 · |ρ2 |2
y.init(c) 0 1

x ⇌ y 1 1

y.send(x) 0 1

y.send() 0 1

handle?x{ρ} |ρ |1 + 1 |ρ |2 + 1

x .req() 0 1

x .req(y) 0 1

x .req(!y1, !y2) 0 1

supply
!cy{ρ} c · |ρ |1 + 2c − 1 |ρ |2 + 1

Fig. 20. Measures for Procn Processes

We now develop a well-founded measure

for Procn , which we show the Procn reduction

rules strictly decrease.We use the lexicographic

ordering of two measures: | − |1 and | − |2. The

first caps the number of times intermediate

channels can be eliminated. The second caps

the number of times suppliers and handlers can

be distributed. The two measures are defined

in Figure 20.

Every reduction rule except the Distrib-

ute rules can easily be shown to strictly reduce

the first measure. The Distribute rules, how-

ever, can only be shown to preserve the first

measure. Fortunately, it is easy to show that

the Distribute rules strictly reduce the second

measure. As a consequence, every reduction of

Procn processes also reduces the lexicographic

order of these measures. This lexicographic order is well-founded, so this implies Procn is termi-

nating, which we have already shown in turn implies that Proc is terminating.

B.4 Confluence
Because Proc is terminating, to prove confluence we only need to prove weak confluence. That is,

we only have to show that, for any two ways a given process ρ can be reduced a single step, it is

possible to apply further reductions to arrive at the same process. This turns out to be easy to prove.

First, note that reduction is conceptually context-insensitive. That is, if the two reduction steps

are applied to disjoint parts of the process, then they trivially commute with each other. Thus we

only have two consider reductions that overlap with each other.

Second, note that most pairs of reduction steps cannot overlap for one of two reasons. The first

reason is that many reduction steps are syntactically distinct. For example, Fail reduces a send

and a handle, whereas Take reduces a supply and a req, so the two cannot overlap. The second

reason is that Proc is linear. So although it might seem that Fail and Succeed could each reduce the

same handle in different ways, this would mean there are two producers for the same intermediate

channel, which provably means the process must be ill-typed.

At this point, the remaining cases necessarily include a Context, Identity, or Distribute as

one of the two steps. The proofs involving Context rely on the fact that reducing a process does

not change the set of channels it produces or consumes. The proofs involving Identity are trivial.

The proofs involving Distribute are straightforward case analyses. By this high-level reasoning,

along with the tedious proof work that we have left to the reader, Proc is weakly confluent and,

since Proc is terminating, this in turn implies Proc is confluent.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 88. Publication date: September 2018.

	Abstract
	1 Introduction
	2 A Simple Language for Exploring Strictness and Laziness
	3 Consumer Choice and Producer Choice
	4 Capturing Consumer Choice and Producer Choice
	5 Effectful Languages and Their Semantics
	5.1 Singly-Effectful Languages
	5.1.1 Producer Effects
	5.1.2 Consumer Effects

	5.2 Doubly-Effectful Languages
	5.2.1 Distributive Laws for Doubly-Effectful Languages
	5.2.2 Semantics Based on Distributive Laws
	5.2.3 Linear Logic Lacks a Distributive Law
	5.2.4 The Monad-Prioritizing Layering
	5.2.5 The Comonad-Prioritizing Layering
	5.2.6 The Layerings in Linear Logic
	5.2.7 The Relationship between Distributive Laws and Layering

	6 Giving Semantics to Choice in Comp
	6.1 A Language without Consumer or Producer Choice
	6.1.1 Syntax and Typing Rules
	6.1.2 Semantics

	6.2 Layering Effects

	7 Related Work
	7.1 Monads and Effects
	7.2 Comonads
	7.3 Combining Monads and Comonads
	7.4 Strictness and Laziness
	7.5 Logic
	7.6 Polarization and Focusing

	8 Conclusion
	Acknowledgments
	References
	A Languages with Multiple Inputs and Multiple Outputs
	B Metatheory for Proc
	B.1 Preservation
	B.2 Progress
	B.3 Termination
	B.4 Confluence

